2019届四川省眉山市高三第一次诊断性考试数学文试题 PDF版.zip
书书书数 学?文 史 类?试 题 第?页?共?页?秘 密?启 用 前?考 试 时 间?年?月?日?眉山市高中?级第一次诊断性考试数?学?文史类?考 试 时 间?分 钟?试 卷 满 分?分?注 意 事 项?答 卷 前?考 生 务 必 将 自 己 的 姓 名?准 考 证 号 填 写 在 答 题 卡 上?回 答 选 择 题 时?选 出 每 小 题 答 案 后?用 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑?如需 改 动?用 橡 皮 擦 干 净 后?再 选 涂 其 它 答 案 标 号?回 答 非 选 择 题 时?将 答 案 写 在 答 题 卡 上?写 在 本 试 卷 上 无 效?考 试 结 束 后?将 本 试 卷 和 答 题 卡 一 并 交 回?一?选 择 题?本 题 共?小 题?每 小 题?分?共?分?在 每 小 题 给 出 的 四 个 选 项 中?只 有 一 项 是符 合 题 目 要 求 的?已 知 集 合?则?复 数?为 虚 数 单 位?在 复 平 面 内 对 应 的 点 所 在 象 限 为?第 一 象 限?第 二 象 限?第 三 象 限?第 四 象 限?已 知?则?槡?槡?槡?槡?函 数?部 分 图 象 大 致 为?中 国 古 代 的 数 学 家 不 仅 很 早 就 发 现 并 应 用 勾 股 定 理?而 且 很 早 就 尝 试对 勾 股 定 理 进 行 证 明?三 国 时 期 吴 国 数 学 家 赵 爽 创 制 了 一 幅?赵 爽 弦图?用 形 数 结 合 的 方 法?给 出 了 勾 股 定 理 的 详 细 证 明?在?赵 爽 弦 图?中?以 弦 为 边 长 得 到 的 正 方 形 由?个 全 等 的 直 角 三 角 形 再 加 上 中 间 的那 个 小 正 方 形 组 成?如 图?正 方 形?是 某 大 厅 按?赵 爽 弦 图?设 计 铺 设 的 地 板 砖?已 知?个 直 角 三 角 形 的 两 直 角 边 分 别 为?若 某 小 物 体 落 在 这 块 地 板 砖 上 任何 位 置 的 机 会 是 均 等 的?则 该 小 物 体 落 在 中 间 小 正 方 形 中 的 概 率 是?下 列 函 数 中?在 区 间?上 为 增 函 数 的 是?执 行 右 图 所 示 的 程 序 框 图?则 输 出 的?的 值 为?若?满 足 约 束 条 件?则?的 最 大 值 为?如 图?正 方 体?的 棱 长 为?点?是 面?内 任 意 一 点?则 四 棱 锥?的 体 积 为?已 知?则?的 大 小 关 系 为?如 图?正 三 棱 锥?的 四 个 顶 点 均 在 球?的 球 面 上?底 面 正 三角 形 的 边 长 为?侧 棱 长 为槡?则 球?的 表 面 积 是?已 知 点?是 抛 物 线?的 准 线 与?轴 的 交 点?为 抛 物 线 的 焦 点?是 抛 物线 上 的 动 点?则?最 小 值 为?槡?槡?数 学?文 史 类?试 题 第?页?共?页?数 学?文 史 类?试 题 第?页?共?页?二?填 空 题?本 题 共?小 题?每 小 题?分?共?分?椭 圆?的 焦 距 为?若 向 量?满 足 条 件?则?张 明 同 学 进 入 高 三 后?次 月 考 数 学 成 绩 的 茎 叶 图 如 右 图 所 示?那 么 他这?次 月 考 数 学 成 绩 的 平 均 数 为?已 知 函 数?有 两 个 零 点?则?的 取 值 范 围 是?三?解 答 题?共?分?解 答 应 写 出 文 字 说 明?证 明 过 程 或 演 算 步 骤?第?题 为 必 考 题?每 个 试 题 考 生 都 必 须 作 答?第?题 为 选 考 题?考 生 依 据 要 求 作 答?一?必 考 题?共?分?本 小 题 满 分?分?设 数 列?的 前?项 和 为?且?当?时?求 通 项 公 式?设?的 各 项 为 正?当?时?求?的 取 值 范 围?本 小 题 满 分?分?已 知?的 内 角?的 对 边 分 别 为?且?求 角?的 大 小?若?为?边 上 的 高?求?的 范 围?本 小 题 满 分?分?某 地 方 教 育 部 门 对 某 学 校 学 生 的 阅 读 素 养 进 行 检 测?在该 校 随 机 抽 取 了?名 学 生 进 行 检 测?将 得 到 的 成 绩?百分 制?按 照?分 成?组?制成 如 图 所 示 频 率 分 布 直 方 图?图 中?求?的 值?已 知 得 分 在?内 的 男 生 数 与 女 生 数 的 比 为?若 在 该 组 中 随 机 抽 取?人 进 行 交 流?求 所 抽 取的 两 人 中 至 少 有 一 名 女 生 的 概 率?本 小 题 满 分?分?某 商 家 销 售 某 种 商 品?已 知 该 商 品 进 货 单 价 由 两 部 分 构 成?一 部 分 为 每 件 产 品 的 进 货 固定 价 为?百 元?另 一 部 分 为 进 货 浮 动 价?据 市 场 调 查?该 产 品 的 销 售 单 价 与 日 销 售 量 的 关 系 如 下 表 所 示?销 售 单 价?单 位?百 元?日 销 售 量?单 位?件?该 产 品 的 进 货 浮 动 价 与 日 销 售 量 关 系 如 下 表 所 示?日 销 售 量?单 位?件?进 货 浮 动 价?单 位?百 元?分 别 建 立 恰 当 的 函 数 模 型?使 它 能 比 较 近 似 地 反 映 该 商 品 日 销 售 量?与 销 售 单 价?的 关 系?进 货 浮 动 价?与 日 销 售 量?的 关 系?注?可 选 的 函 数 模 型 有 一 次 函 数?二 次 函 数?反 比 例 函 数?指 数 函 数?对 数 函 数?幂 函 数?运 用?中 的 函 数 模 型 判 断?该 产 品 销 售 单 价 确 定 为 多 少 元 时?单 件 产 品 的 利 润 最 大?注?单 件 产 品 的 利 润?单 件 售 价?进 货 浮 动 价?进 货 固 定 价?本 小 题 满 分?分?已 知 函 数?曲 线?在 点?处 的 切 线 方 程 为?求?的 值?求 证?当?时?不 等 式?恒 成 立?二?选 考 题?共?分?请 考 生 在 第?题 中 任 选 一 题 作 答?如 果 多 做?则 按 所 做 的 第一 题 记 分?选 修?坐 标 系 与 参 数 方 程?本 小 题 满 分?分?在 直 角 坐 标 系?中?曲 线?的 参 数 方 程 为?以 坐 标 原 点 为 极 点?轴正 半 轴 为 极 轴 建 立 极 坐 标 系?曲 线?的 极 坐 标 方 程 为?求?的 普 通 方 程?的 直 角 坐 标 方 程?曲 线?与?交 于 点?求?的 值?选 修?不 等 式 选 讲?本 小 题 满 分?分?已 知 函 数?解 不 等 式?设 函 数?的 最 小 值 为?若 实 数?满 足?求?最 小 值?数 学?文 史 类?试 题 第?页?共?页?书书书数 学?文 史 类?试 题 答 案 第?页?共?页?眉山市高中?级第一次诊断性考试数学?文史类?参考答案评 分 说 明?本 解 答 给 出 了 一 种 或 几 种 解 法 供 参 考?如 果 考 生 的 解 法 与 本 解 答 不 同?可 根 据 试 题 的 主 要考 查 内 容 比 照 评 分 参 考 制 定 相 应 的 评 分 细 则?对 计 算 题?当 考 生 的 解 答 在 某 一 步 出 现 错 误 时?如 果 后 继 部 分 的 解 答 未 改 变 该 题 的 内 容 和难 度?可 视 影 响 的 程 度 决 定 后 继 部 分 的 给 分?但 不 得 超 过 该 部 分 正 确 解 答 应 得 分 数 的 一 半?如 果后 继 部 分 的 解 答 有 较 严 重 的 错 误?就 不 再 给 分?解 答 右 端 所 注 分 数?表 示 考 生 正 确 做 到 这 一 步 应 得 的 累 加 分 数?只 给 整 数 分?选 择 题 和 填 空 题 不 给 中 间 分?解?当?时?则?所 以?分 而 当?时?满 足 上 式?所 以?分?由?当?时?分 当?时?分 由 数 列?的 各 项 为 正?则?由 此 可 知?所 以?的 取 值 范 围 为?分?解?由?得?根 据 正 弦 定 理 有?分 所 以?即?因 为?所 以?所 以?分 数 学?文 史 类?试 题 答 案 第?页?共?页?因 为?由?所 以?槡?所 以?槡?分 由 余 弦 定 理 得?当 且 仅 当?时 等 号 成立?所 以?所 以?槡?分?解?由?于 是?解 得?分?得 分 在?内 有?人?其 中 女 生?人?男 生?人?分 设 其 中 女 生 为?男 生 为?从 中 任 取 两 人?所 有 的 基 本 事 件 为?共?个?至 少 有?名 女 生 的 有?共?个?所 以?抽 取 的 两 人 中 至 少 有 一 名 女 生 的 概 率 为?即 为?分?解?根 据 表 中 数 据?销 售 单 价 每 增 加?百 元?日 销 售 量 就 减 少?件?所 以 销 售 单 价 和 日 销售 量 为 一 次 函 数 的 关 系?故 设?由?解 得?即?分 又 根 据 表 中 数 据?日 销 售 量 和 进 货 浮 动 价 的 积 为 一 个 固 定 常 数?考 虑 其 为 一 个 反 比 例 函 数关 系?设?由 题 可 得?于 是?分?由?得?设 单 件 产 品 的 利 润 为?百 元?则?分 数 学?文 史 类?试 题 答 案 第?页?共?页?因 为?所 以?所 以?又?槡?分 当 且 仅 当?即?等 号 成 立?所 以?故 单 件 产 品 售 价 定 为?元 时?单 件 产 品 的 利 润 最 大?为?元?分?解?由?得?由 于?在 点?处 的 切 线 方 程 为?所 以?即?解 得?分?由?得?令?则?分 注 意 到?令?则?分 所 以?在?时 单 调 递 增?则?所 以?单 调 递 增?则?所 以?分 选 考 题?分?解?的 普 通 方 程 为?分?的 直 角 坐 标 方 程 为?分?解 法 一?由?的 方 程 可 化 为?即?是 圆 心 为?半 径?槡?的 圆?又 圆 心 到 直 线?的 距 离 为?槡?分 故?槡?槡?槡?分 数 学?文 史 类?试 题 答 案 第?页?共?页?解 法 二?将?的 参 数 方 程 可 化 为?槡?槡?代 入?的 方 程?化 简 整 理?得?槡?所 以?槡?从 而?槡?分?解?当?时?则?解 得?分 当?时?则?解 得?分 当?时?则?此 时 无 解?分 综 上?不 等 式?的 解 集 为?分?由?知?当?时?当?时?则?当?时?则?故 函 数?的 最 小 值 为?所 以?即?分 则?分?槡?分 当 且 仅 当?且?即?取 等 号?所 以?最 小 值 为?分
收藏
编号:2816863
类型:共享资源
大小:2.59MB
格式:ZIP
上传时间:2024-01-04
6
积分
- 关 键 词:
-
四川省
眉山市
高三
第一次
诊断
考试
数学
试题
pdf
- 资源目录:
-
(温馨提示:点“+”可展开查看一级资源目录。点“-”可关闭资源目录。)
- 资源描述:
-
书书书数 学?文 史 类?试 题 第?页?共?页?秘 密?启 用 前?考 试 时 间?年?月?日?眉山市高中?级第一次诊断性考试数?学?文史类?考 试 时 间?分 钟?试 卷 满 分?分?注 意 事 项?答 卷 前?考 生 务 必 将 自 己 的 姓 名?准 考 证 号 填 写 在 答 题 卡 上?回 答 选 择 题 时?选 出 每 小 题 答 案 后?用 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑?如需 改 动?用 橡 皮 擦 干 净 后?再 选 涂 其 它 答 案 标 号?回 答 非 选 择 题 时?将 答 案 写 在 答 题 卡 上?写 在 本 试 卷 上 无 效?考 试 结 束 后?将 本 试 卷 和 答 题 卡 一 并 交 回?一?选 择 题?本 题 共?小 题?每 小 题?分?共?分?在 每 小 题 给 出 的 四 个 选 项 中?只 有 一 项 是符 合 题 目 要 求 的?已 知 集 合?则?复 数?为 虚 数 单 位?在 复 平 面 内 对 应 的 点 所 在 象 限 为?第 一 象 限?第 二 象 限?第 三 象 限?第 四 象 限?已 知?则?槡?槡?槡?槡?函 数?部 分 图 象 大 致 为?中 国 古 代 的 数 学 家 不 仅 很 早 就 发 现 并 应 用 勾 股 定 理?而 且 很 早 就 尝 试对 勾 股 定 理 进 行 证 明?三 国 时 期 吴 国 数 学 家 赵 爽 创 制 了 一 幅?赵 爽 弦图?用 形 数 结 合 的 方 法?给 出 了 勾 股 定 理 的 详 细 证 明?在?赵 爽 弦 图?中?以 弦 为 边 长 得 到 的 正 方 形 由?个 全 等 的 直 角 三 角 形 再 加 上 中 间 的那 个 小 正 方 形 组 成?如 图?正 方 形?是 某 大 厅 按?赵 爽 弦 图?设 计 铺 设 的 地 板 砖?已 知?个 直 角 三 角 形 的 两 直 角 边 分 别 为?若 某 小 物 体 落 在 这 块 地 板 砖 上 任何 位 置 的 机 会 是 均 等 的?则 该 小 物 体 落 在 中 间 小 正 方 形 中 的 概 率 是?下 列 函 数 中?在 区 间?上 为 增 函 数 的 是?执 行 右 图 所 示 的 程 序 框 图?则 输 出 的?的 值 为?若?满 足 约 束 条 件?则?的 最 大 值 为?如 图?正 方 体?的 棱 长 为?点?是 面?内 任 意 一 点?则 四 棱 锥?的 体 积 为?已 知?则?的 大 小 关 系 为?如 图?正 三 棱 锥?的 四 个 顶 点 均 在 球?的 球 面 上?底 面 正 三角 形 的 边 长 为?侧 棱 长 为槡?则 球?的 表 面 积 是?已 知 点?是 抛 物 线?的 准 线 与?轴 的 交 点?为 抛 物 线 的 焦 点?是 抛 物线 上 的 动 点?则?最 小 值 为?槡?槡?数 学?文 史 类?试 题 第?页?共?页?数 学?文 史 类?试 题 第?页?共?页?二?填 空 题?本 题 共?小 题?每 小 题?分?共?分?椭 圆?的 焦 距 为?若 向 量?满 足 条 件?则?张 明 同 学 进 入 高 三 后?次 月 考 数 学 成 绩 的 茎 叶 图 如 右 图 所 示?那 么 他这?次 月 考 数 学 成 绩 的 平 均 数 为?已 知 函 数?有 两 个 零 点?则?的 取 值 范 围 是?三?解 答 题?共?分?解 答 应 写 出 文 字 说 明?证 明 过 程 或 演 算 步 骤?第?题 为 必 考 题?每 个 试 题 考 生 都 必 须 作 答?第?题 为 选 考 题?考 生 依 据 要 求 作 答?一?必 考 题?共?分?本 小 题 满 分?分?设 数 列?的 前?项 和 为?且?当?时?求 通 项 公 式?设?的 各 项 为 正?当?时?求?的 取 值 范 围?本 小 题 满 分?分?已 知?的 内 角?的 对 边 分 别 为?且?求 角?的 大 小?若?为?边 上 的 高?求?的 范 围?本 小 题 满 分?分?某 地 方 教 育 部 门 对 某 学 校 学 生 的 阅 读 素 养 进 行 检 测?在该 校 随 机 抽 取 了?名 学 生 进 行 检 测?将 得 到 的 成 绩?百分 制?按 照?分 成?组?制成 如 图 所 示 频 率 分 布 直 方 图?图 中?求?的 值?已 知 得 分 在?内 的 男 生 数 与 女 生 数 的 比 为?若 在 该 组 中 随 机 抽 取?人 进 行 交 流?求 所 抽 取的 两 人 中 至 少 有 一 名 女 生 的 概 率?本 小 题 满 分?分?某 商 家 销 售 某 种 商 品?已 知 该 商 品 进 货 单 价 由 两 部 分 构 成?一 部 分 为 每 件 产 品 的 进 货 固定 价 为?百 元?另 一 部 分 为 进 货 浮 动 价?据 市 场 调 查?该 产 品 的 销 售 单 价 与 日 销 售 量 的 关 系 如 下 表 所 示?销 售 单 价?单 位?百 元?日 销 售 量?单 位?件?该 产 品 的 进 货 浮 动 价 与 日 销 售 量 关 系 如 下 表 所 示?日 销 售 量?单 位?件?进 货 浮 动 价?单 位?百 元?分 别 建 立 恰 当 的 函 数 模 型?使 它 能 比 较 近 似 地 反 映 该 商 品 日 销 售 量?与 销 售 单 价?的 关 系?进 货 浮 动 价?与 日 销 售 量?的 关 系?注?可 选 的 函 数 模 型 有 一 次 函 数?二 次 函 数?反 比 例 函 数?指 数 函 数?对 数 函 数?幂 函 数?运 用?中 的 函 数 模 型 判 断?该 产 品 销 售 单 价 确 定 为 多 少 元 时?单 件 产 品 的 利 润 最 大?注?单 件 产 品 的 利 润?单 件 售 价?进 货 浮 动 价?进 货 固 定 价?本 小 题 满 分?分?已 知 函 数?曲 线?在 点?处 的 切 线 方 程 为?求?的 值?求 证?当?时?不 等 式?恒 成 立?二?选 考 题?共?分?请 考 生 在 第?题 中 任 选 一 题 作 答?如 果 多 做?则 按 所 做 的 第一 题 记 分?选 修?坐 标 系 与 参 数 方 程?本 小 题 满 分?分?在 直 角 坐 标 系?中?曲 线?的 参 数 方 程 为?以 坐 标 原 点 为 极 点?轴正 半 轴 为 极 轴 建 立 极 坐 标 系?曲 线?的 极 坐 标 方 程 为?求?的 普 通 方 程?的 直 角 坐 标 方 程?曲 线?与?交 于 点?求?的 值?选 修?不 等 式 选 讲?本 小 题 满 分?分?已 知 函 数?解 不 等 式?设 函 数?的 最 小 值 为?若 实 数?满 足?求?最 小 值?数 学?文 史 类?试 题 第?页?共?页?书书书数 学?文 史 类?试 题 答 案 第?页?共?页?眉山市高中?级第一次诊断性考试数学?文史类?参考答案评 分 说 明?本 解 答 给 出 了 一 种 或 几 种 解 法 供 参 考?如 果 考 生 的 解 法 与 本 解 答 不 同?可 根 据 试 题 的 主 要考 查 内 容 比 照 评 分 参 考 制 定 相 应 的 评 分 细 则?对 计 算 题?当 考 生 的 解 答 在 某 一 步 出 现 错 误 时?如 果 后 继 部 分 的 解 答 未 改 变 该 题 的 内 容 和难 度?可 视 影 响 的 程 度 决 定 后 继 部 分 的 给 分?但 不 得 超 过 该 部 分 正 确 解 答 应 得 分 数 的 一 半?如 果后 继 部 分 的 解 答 有 较 严 重 的 错 误?就 不 再 给 分?解 答 右 端 所 注 分 数?表 示 考 生 正 确 做 到 这 一 步 应 得 的 累 加 分 数?只 给 整 数 分?选 择 题 和 填 空 题 不 给 中 间 分?解?当?时?则?所 以?分 而 当?时?满 足 上 式?所 以?分?由?当?时?分 当?时?分 由 数 列?的 各 项 为 正?则?由 此 可 知?所 以?的 取 值 范 围 为?分?解?由?得?根 据 正 弦 定 理 有?分 所 以?即?因 为?所 以?所 以?分 数 学?文 史 类?试 题 答 案 第?页?共?页?因 为?由?所 以?槡?所 以?槡?分 由 余 弦 定 理 得?当 且 仅 当?时 等 号 成立?所 以?所 以?槡?分?解?由?于 是?解 得?分?得 分 在?内 有?人?其 中 女 生?人?男 生?人?分 设 其 中 女 生 为?男 生 为?从 中 任 取 两 人?所 有 的 基 本 事 件 为?共?个?至 少 有?名 女 生 的 有?共?个?所 以?抽 取 的 两 人 中 至 少 有 一 名 女 生 的 概 率 为?即 为?分?解?根 据 表 中 数 据?销 售 单 价 每 增 加?百 元?日 销 售 量 就 减 少?件?所 以 销 售 单 价 和 日 销售 量 为 一 次 函 数 的 关 系?故 设?由?解 得?即?分 又 根 据 表 中 数 据?日 销 售 量 和 进 货 浮 动 价 的 积 为 一 个 固 定 常 数?考 虑 其 为 一 个 反 比 例 函 数关 系?设?由 题 可 得?于 是?分?由?得?设 单 件 产 品 的 利 润 为?百 元?则?分 数 学?文 史 类?试 题 答 案 第?页?共?页?因 为?所 以?所 以?又?槡?分 当 且 仅 当?即?等 号 成 立?所 以?故 单 件 产 品 售 价 定 为?元 时?单 件 产 品 的 利 润 最 大?为?元?分?解?由?得?由 于?在 点?处 的 切 线 方 程 为?所 以?即?解 得?分?由?得?令?则?分 注 意 到?令?则?分 所 以?在?时 单 调 递 增?则?所 以?单 调 递 增?则?所 以?分 选 考 题?分?解?的 普 通 方 程 为?分?的 直 角 坐 标 方 程 为?分?解 法 一?由?的 方 程 可 化 为?即?是 圆 心 为?半 径?槡?的 圆?又 圆 心 到 直 线?的 距 离 为?槡?分 故?槡?槡?槡?分 数 学?文 史 类?试 题 答 案 第?页?共?页?解 法 二?将?的 参 数 方 程 可 化 为?槡?槡?代 入?的 方 程?化 简 整 理?得?槡?所 以?槡?从 而?槡?分?解?当?时?则?解 得?分 当?时?则?解 得?分 当?时?则?此 时 无 解?分 综 上?不 等 式?的 解 集 为?分?由?知?当?时?当?时?则?当?时?则?故 函 数?的 最 小 值 为?所 以?即?分 则?分?槡?分 当 且 仅 当?且?即?取 等 号?所 以?最 小 值 为?分
展开阅读全文
蜗牛文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。