分享
2023届山东省济宁市邹城一中高三压轴卷数学试卷(含解析).doc
下载文档

ID:28111

大小:2.51MB

页数:23页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 山东省 济宁市 邹城 一中 压轴 数学试卷 解析
2023学年高考数学模拟测试卷 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.在展开式中的常数项为   A.1 B.2 C.3 D.7 2.已知,则 (  ) A. B. C. D. 3.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,,的概率为( ) A. B. C. D. 4.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述: 甲:我走红门盘道徒步线路,乙走桃花峪登山线路; 乙:甲走桃花峪登山线路,丙走红门盘道徒步线路; 丙:甲走天烛峰登山线路,乙走红门盘道徒步线路; 事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( ) A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路 C.丙走桃花峪登山线路 D.甲走天烛峰登山线路 5.已知集合.为自然数集,则下列表示不正确的是( ) A. B. C. D. 6.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为( ) A. B. C. D. 7.函数的图象与函数的图象的交点横坐标的和为( ) A. B. C. D. 8.如图,四面体中,面和面都是等腰直角三角形,,,且二面角的大小为,若四面体的顶点都在球上,则球的表面积为( ) A. B. C. D. 9.已知复数,则( ) A. B. C. D.2 10.已知公差不为0的等差数列的前项的和为,,且成等比数列,则( ) A.56 B.72 C.88 D.40 11.设点,,不共线,则“”是“”( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 12.函数与的图象上存在关于直线对称的点,则的取值范围是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为________. 14.若且时,不等式恒成立,则实数a的取值范围为________. 15.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人. 16.已知函数与的图象上存在关于轴对称的点,则的取值范围为_____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)唐诗是中国文学的瑰宝.为了研究计算机上唐诗分类工作中检索关键字的选取,某研究人员将唐诗分成7大类别,并从《全唐诗》48900多篇唐诗中随机抽取了500篇,统计了每个类别及各类别包含“花”、“山”、“帘”字的篇数,得到下表: 爱情婚姻 咏史怀古 边塞战争 山水田园 交游送别 羁旅思乡 其他 总计 篇数 100 64 55 99 91 73 18 500 含“山”字的篇数 51 48 21 69 48 30 4 271 含“帘”字的篇数 21 2 0 0 7 3 5 38 含“花”字的篇数 60 6 14 17 32 28 3 160 (1)根据上表判断,若从《全唐诗》含“山”字的唐诗中随机抽取一篇,则它属于哪个类别的可能性最大,属于哪个类别的可能性最小,并分别估计该唐诗属于这两个类别的概率; (2)已知检索关键字的选取规则为: ①若有超过95%的把握判断“某字”与“某类别”有关系,则“某字”为“某类别”的关键字; ②若“某字”被选为“某类别”关键字,则由其对应列联表得到的的观测值越大,排名就越靠前; 设“山”“帘”“花”和“爱情婚姻”对应的观测值分别为,,.已知,,请完成下面列联表,并从上述三个字中选出“爱情婚姻”类别的关键字并排名. 属于“爱情婚姻”类 不属于“爱情婚姻”类 总计 含“花”字的篇数 不含“花”的篇数 总计 附:,其中. 0.05 0.025 0.010 3.841 5.024 6.635 18.(12分)我们称n()元有序实数组(,,…,)为n维向量,为该向量的范数.已知n维向量,其中,,2,…,n.记范数为奇数的n维向量的个数为,这个向量的范数之和为. (1)求和的值; (2)当n为偶数时,求,(用n表示). 19.(12分)记函数的最小值为. (1)求的值; (2)若正数,,满足,证明:. 20.(12分)已知函数 (1)讨论的单调性; (2)当时,,求的取值范围. 21.(12分)已知函数. (1)求不等式的解集; (2)若关于的不等式在上恒成立,求实数的取值范围. 22.(10分)已知函数,. (1)当时,讨论函数的单调性; (2)若,当时,函数,求函数的最小值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 求出展开项中的常数项及含的项,问题得解。 【题目详解】 展开项中的常数项及含的项分别为: ,, 所以展开式中的常数项为:. 故选:D 【答案点睛】 本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。 2、B 【答案解析】 利用诱导公式以及同角三角函数基本关系式化简求解即可. 【题目详解】 , 本题正确选项: 【答案点睛】 本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力. 3、B 【答案解析】 首先求出基本事件总数,则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”, 记事件“恰好不同时包含字母,,”为,利用对立事件的概率公式计算可得; 【题目详解】 解:从9个球中摸出3个球,则基本事件总数为(个), 则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,” 记事件“恰好不同时包含字母,,”为,则. 故选:B 【答案点睛】 本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题. 4、D 【答案解析】 甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可. 【题目详解】 若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾. 故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确. 综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路, 丙走红门盘道徒步线路 故选:D 【答案点睛】 本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型. 5、D 【答案解析】 集合.为自然数集,由此能求出结果. 【题目详解】 解:集合.为自然数集, 在A中,,正确; 在B中,,正确; 在C中,,正确; 在D中,不是的子集,故D错误. 故选:D. 【答案点睛】 本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题. 6、B 【答案解析】 通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值. 【题目详解】 解:由题意可知,抛物线的准线方程为,, 过作垂直直线于, 由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大, 设在的方程为:,所以, 解得:, 所以,解得, 所以, . 故选:. 【答案点睛】 本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题. 7、B 【答案解析】 根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【题目详解】 令,有,所以或.又,所以或或或,所以函数的图象与函数的图象交点的横坐标的和,故选B. 【答案点睛】 本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养. 8、B 【答案解析】 分别取、的中点、,连接、、,利用二面角的定义转化二面角的平面角为,然后分别过点作平面的垂线与过点作平面的垂线交于点,在中计算出,再利用勾股定理计算出,即可得出球的半径,最后利用球体的表面积公式可得出答案. 【题目详解】 如下图所示, 分别取、的中点、,连接、、, 由于是以为直角等腰直角三角形,为的中点,, ,且、分别为、的中点,所以,,所以,,所以二面角的平面角为, ,则,且,所以,,, 是以为直角的等腰直角三角形,所以,的外心为点,同理可知,的外心为点, 分别过点作平面的垂线与过点作平面的垂线交于点,则点在平面内,如下图所示, 由图形可知,, 在中,,, 所以,, 所以,球的半径为,因此,球的表面积为. 故选:B. 【答案点睛】 本题考查球体的表面积,考查二面角的定义,解决本题的关键在于找出球心的位置,同时考查了计算能力,属于中等题. 9、C 【答案解析】 根据复数模的性质即可求解. 【题目详解】 , , 故选:C 【答案点睛】 本题主要考查了复数模的性质,属于容易题. 10、B 【答案解析】 ,将代入,求得公差d,再利用等差数列的前n项和公式计算即可. 【题目详解】 由已知,,,故,解得或(舍), 故,. 故选:B. 【答案点睛】 本题考查等差数列的前n项和公式,考查等差数列基本量的计算,是一道容易题. 11、C 【答案解析】 利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可. 【题目详解】 由于点,,不共线,则“”; 故“”是“”的充分必要条件. 故选:C. 【答案点睛】 本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题. 12、C 【答案解析】 由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论. 【题目详解】 解:由题可知,曲线与有公共点,即方程有解, 即有解,令,则, 则当时,;当时,, 故时,取得极大值,也即为最大值, 当趋近于时,趋近于,所以满足条件. 故选:C. 【答案点睛】 本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题. 二、填空题:本题共4小题,每小题5分,共20分。 13、20 【答案解析】 由三视图知该几何体是一个圆柱与一个半球的四分之三的组合,利用球体体积公式、圆柱体积公式计算即可. 【题目详解】 由三视图知,该几何体是由一个半径为2的半球的四分之三和一

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开