直角三角形的边角关系
直角三角形
边角
关系
单元
检测
第一章 直角三角形的边角关系
单元测试
(时间:120分钟 总分:120分)
一、填空题:(每小题3分,共30分)
1. 计算:3tan30°-2sin60°=_________,=______.
2.用计算器计算:cos40°=________.
3.如图,P是∠α的边OA上一点,且P点的坐标为(3,4),则sinα=_____,tanα= ____.
(第3题) (第9题) (第11题)
4.在Rt△ABC中,∠C=90°,BC=12,AB=13,则sinA=______,sinB=________.
5.等腰三角形的腰长为20,底边长为32,则其底角的余弦值是________.
6.在Rt△ABC中,已知直角边AC是另一直角边BC的2倍,则tanA的值为______.
7.已知△ABC中,∠ABC=45°,∠ACB=30°,AB=2,那么AC的长为_________.
8.山坡与地平面成30°的倾斜角,某人上坡走60米, 则他上升的最大高度为___,山坡的坡度是________.
9.如图,是屋架设计图的一部分,其中BC⊥AC,DE⊥AC,点D是AB的中点,∠A=30°,AB=7m,则BC=_______m,DE=______m.
10.在地面上一点,测得电视塔尖的仰角为45°,沿水平方向再向塔底前行a米, 又测得塔尖的仰角为60°,那么电视塔高为________米.
二、选择题:(每小题3分,共30分)
11.如图,△ABC中,∠C=90°,sinA=,则BC:AC的值为( )
A.5:13 B.5:12 C.12:13 D.12:5
12.在△ABC中,AB=AC=3,BC=2,则6cosB等于( )
A.3 B.2 C.3 D.2
13.如果α是锐角,且cosα=,那么sinα的值是( )
A. B. C. D.
14.如图,Rt△ABC中,∠C=90°,AC=BC,AC=6,D是AC上一点,tan∠DBA=,则AD 的长为( )
A. B.2 C.1 D.2
(第14题) (第15题) (第19题)
15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=3,AC=4,设∠BCD=α, 则tanα的值为( )
A. B. C. D.
16.已知△ABC中,∠C=90°,BC=3AC,则sinA的值等于( )
A. B. C. D.
17.从点A看点B的仰角为36°30′,则从点B看点A的俯角为( )
A.53°30′ B.43°30′ C.36°30′ D.63°30′
18.离地面高度为5米处引拉线固定电线杆,拉线与地面成60°角,则拉线长为( )
A.5米 B.米 C.米 D.10米
19.如图,小红从A地向北偏东30°方向走100m到B地,再从B地向西走200m到C地,这时小红离A地( )
A.150m B.100 m C.100m D.50m
20. 某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( )
A.450a元 B.225a元 C.150a元 D.300a元
三、解答题:(共60分)
21.(8分)计算:
(1) ; (2)sin28°+cos13°-tan20°(精确到万分位).
22.(8分)如图,已知在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD=1, 记∠CAD=α.
(1)试求sinα,cosα,tanα的值;
(2)若∠B=α,求BD的长.
23.(8分)如图,D是△ABC的边AC上的一点,CD=2AD,AE⊥BC于E,若BD=8,sin ∠CBD=,求AE的长.
24.(8分)如图,一艘海轮位于灯塔P的北偏东60°方向上, 它沿正南方向航行70海里,到达位于灯塔P的南偏东30°方向的B处,问此时,海轮距离灯塔P多远?
25.(8分)如图,为了测量河流某段的宽度,在河的北岸选了一点A,在河的南岸选相距200米的B,C两点,分别测得∠ABC=60°,∠ACB=45°,求这段河流的宽度(精确到0.1米).
26.(10分)如图为住宅区内的两幢楼;它们的高AB=CD=30m,两楼间的距离AC= 24m,现需了解南楼对北楼的采光的影响情况. 经测量发现南楼的影子落在北楼上有16.2m.问此时太阳光线与水平线的夹角的度数.
27.(10分)如图,在平面直角坐标系中,四边形ABCO是正方形,C点的坐标是(4, 0).
(1)写出A,B两点的坐标;
(2)若E是线段BC上一点,且∠AEB=60°,沿AE折叠正方形ABCO,折叠后B点落在平面内F点处.请画出F点并求出它的坐标;
(3)若E是直线BC上任意一点,问是否存在这样的E点使正方形ABCO沿AE折叠后, B点恰好落在x轴上的某一点P处?若存在,请写出此时P点和E点的坐标;若不存在, 说明理由.
参考答案
1.0,3 2.0.7660 3. 4. 5. 6. 7.4 8.30米,
9. 10. a
11.B 12.B 13.B 14.B 15.A 16.D 17.C 18.B 19.B 20.C
21.(1)原式=.
(2)原式=0.46974+0.97437-0.36397=1.0799.
22.(1)AD=,故sinα=,,.
(2)△CAB∽△CDA,得,CA2=CD·CB,即22=CB,CB=4,BD=4-1=3.
23.过D作DF⊥BC于F,则DF=BD·sin∠CBD=8×=6,
由AE⊥BC,DF⊥BC,得DF∥AE,
故,故AE=DF=9.
24.由已知得,∠APB=90°,∠B=30°,AB=70,
故PB=AB·cosB=70×cos30°=35 ( 海里).
25.过A作AD⊥BC于D,则在Rt△ACD中,∠ACB=45°,
故AD=CD.在Rt△ABD中,AB= BD·tan∠ABC=BD.
设BD=x,则AD=CD=x,
故(+1)x=200,x=≈73.2(米).
26.设点B的影子落在北楼的E点处,过E作EF⊥AB于F,连接AE,
∵CE=16.2,∴AF= 16.2.∴BF=30-16.2=13.8.
又EF=AC=24.∴tan∠BEF==0.575.
故∠BEF=29°54′.即太阳光线与水平线的夹角为29°54′.
27.(1)A(0,4),B(4,4).
(2)以AE为对称轴作B点的对称点F,则点F即为所求的点,
连接AF,EF,过F作FM ⊥x轴于M,FH⊥y轴于H.
在Rt△AHF中,AF=AB=4,∠HAF=30°,
故HF=AF·sin30°=4×=2,AH=AF×cos30°=4×=2,
∴OH=OA-AH=4-2,∴F(2,4-2).
(3)存在.当E与C重合时,正方形沿AE折叠后B点落在x轴上,且B与O点重合, 此时P(0,0),E(4,0).
7 / 7