分享
2017年辽宁省营口市中考数学试卷.doc
下载文档

ID:2806991

大小:695.08KB

页数:36页

格式:DOC

时间:2024-01-03

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2017 辽宁省 营口市 中考 数学试卷
2017年辽宁省营口市中考数学试卷   一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.) 1.(3分)﹣5的相反数是(  ) A.﹣5 B.±5 C. D.5 2.(3分)下列几何体中,同一个几何体的三视图完全相同的是(  ) A.球 B.圆锥 C.圆柱 D.三棱柱 3.(3分)下列计算正确的是(  ) A.(﹣2xy)2=﹣4x2y2 B.x6÷x3=x2 C.(x﹣y)2=x2﹣y2 D.2x+3x=5x 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表: 月用水量/m3 4 5 6 8 9 10 户数 6 7 9 5 2 1 则这30户家庭的月用水量的众数和中位数分别是(  ) A.6,6 B.9,6 C.9,6 D.6,7 5.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是(  ) A.a+b<0 B.a﹣b>0 C.ab>0 D.<0 6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是(  ) A.75° B.85° C.60° D.65° 7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是(  ) A.∠ECD=112.5° B.DE平分∠FDC C.∠DEC=30° D.AB=CD 8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为(  ) A.y=﹣ B.y=﹣ C.y=﹣ D.y= 9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为(  ) A.4 B.5 C.6 D.7 10.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是(  ) A. B. C. D.   二、填空题(每小题3分,共24分,将答案填在答题纸上) 11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为   . 12.(3分)函数y=中,自变量x的取值范围是   . 13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是   个. 14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是   . 15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为   . 16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为   . 17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为   . 18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形AnBnCn的面积为   .(用含n的代数式表示)   三、解答题(19小题10分,20小题10分,共20分.) 19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°. 20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀. (1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率; (2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).   四、解答题(21题12分,22小题12分,共24分) 21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题: (1)这四个班参与大赛的学生共   人; (2)请你补全两幅统计图; (3)求图1中甲班所对应的扇形圆心角的度数; (4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人. 22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)   五、解答题(23小题12分,24小题12分,共24分) 23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F. (1)求证:CD是⊙O的切线; (2)若cos∠CAD=,BF=15,求AC的长. 24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元. (1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围. (2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.   六、解答题(本题满分14分) 25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB. (1)若四边形ABCD为正方形. ①如图1,请直接写出AE与DF的数量关系   ; ②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由; (3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.   七、解答题(本题满分14分) 26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E. (1)求抛物线解析式; (2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积; (3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由. 【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】   2017年辽宁省营口市中考数学试卷 参考答案与试题解析   一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.) 1.(3分)(2017•营口)﹣5的相反数是(  ) A.﹣5 B.±5 C. D.5 【分析】根据相反数的定义直接求得结果. 【解答】解:﹣5的相反数是5. 故选:D. 【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.   2.(3分)(2017•营口)下列几何体中,同一个几何体的三视图完全相同的是(  ) A.球 B.圆锥 C.圆柱 D.三棱柱 【分析】分别写出各个立体图形的三视图,判断即可. 【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确 B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误; C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误; D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确. 故选:A. 【点评】本题考查了简单几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.   3.(3分)(2017•营口)下列计算正确的是(  ) A.(﹣2xy)2=﹣4x2y2 B.x6÷x3=x2 C.(x﹣y)2=x2﹣y2 D.2x+3x=5x 【分析】根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案. 【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误; B、x6÷x3=x3,故本选项错误; C、(x﹣y)2=x2﹣2xy+y2,故本选项错误; D、2x+3x=5x,故本选项正确; 故选D. 【点评】此题考查了同底数幂的除法、积的乘方、完全平方公式和合并同类项,熟练掌握运算法则是解题的关键,是一道基础题.   4.(3分)(2017•营口)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表: 月用水量/m3 4 5 6 8 9 10 户数 6 7 9 5 2 1 则这30户家庭的月用水量的众数和中位数分别是(  ) A.6,6 B.9,6 C.9,6 D.6,7 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数, 在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6. 故选A. 【点评】本题主要考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.   5.(3分)(2017•营口)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是(  ) A.a+b<0 B.a﹣b>0 C.ab>0 D.<0 【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a<0,b>0,然后一一判断各选项即可解决问题. 【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限, ∴a<0,b>0, ∴a+b不一定大于0,故A错误, a﹣b<0,故B错误, ab<0,故C错误, <0,故D正确. 故选D. 【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.   6.(3分)(2017•营口)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是(  ) A.75° B.85° C.60° D.65° 【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可. 【解答】解:如图所示,∵DE∥BC, ∴∠2=∠3=115°, 又∵∠3是△ABC的外角, ∴∠1=∠3﹣∠A=115°﹣30°=85°, 故选:B. 【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.   7.(3分)(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是(  ) A.∠ECD=112.5° B.DE平分∠FDC C.∠DEC=30° D.AB=CD 【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确; 根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确; 由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C错误; 在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确. 【解答】解:∵AB=AC,∠CAB=45°, ∴∠B=∠ACB=67.5°. ∵Rt△ADC中,∠CAD=45°,∠ADC=90°, ∴∠ACD=45°,AD=DC, ∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意; ∵E、F分别是BC、AC的中点, ∴FE=AB,FE∥AB, ∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°. ∵F是AC的中点,∠ADC=90°,AD=DC, ∴FD=AC,DF⊥AC,∠FDC=45°, ∵AB=AC, ∴FE=FD, ∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°, ∴∠FDE=∠FDC, ∴DE平分∠FDC,故B正确,不符合题意; ∵∠FEC=∠B=67.5°,∠FED=22.5°, ∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意; ∵Rt△ADC中,∠ADC=90°,AD=DC, ∴AC=CD, ∵AB=AC, ∴AB=CD,故D正确,不符合题意. 故选C. 【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.   8.(3分)(2017•营口)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为(  ) A.y=﹣ B.y=﹣ C.y=﹣ D.y= 【分析】过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可. 【解答】解:过点C作CD⊥x轴于D, 设菱形的边长为a, 在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a, 则C(﹣a,a), 点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2), 则, 解得. 故反比例函数解析式为y=﹣. 故选:A. 【点评】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、平移的性质等知识;本题综合性强,有一定难度.   9.(3分)(2017•营口)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为(  ) A.4 B.5 C.6 D.7 【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论. 【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP. 此时DP+CP=DP+PC′=DC′的值最小. ∵BD=3,DC=1 ∴BC=4, ∴BD=3, 连接BC′,由对称性可知∠C′BA=∠CBA=45°, ∴∠CBC′=90°, ∴BC′⊥BC,∠BCC′=∠BC′C=45°, ∴BC=BC′=4, 根据勾股定理可得DC′===5. 故选B. 【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD的值最小是解题的关键.   10.(3分)(2017•营口)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是(  ) A. B. C. D. 【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断. 【解答】解:当0<t≤2时,S=t2, 当2<t≤4时,S=t2﹣(2t﹣4)2=﹣t2+8t﹣8, 观察图象可知,S与t之间的函数关系的图象大致是C. 故答案为C. 【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.   二、填空题(每小题3分,共24分,将答案填在答题纸上) 11.(3分)(2017•营口)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为 2.915×1010 . 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数. 【解答】解:29150000000=2.915×1010. 故答案为:2.915×1010. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.   12.(3分)(2017•营口)函数y=中,自变量x的取值范围是 x≥1 . 【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x﹣1≥0;分母不等于0,可知:x+1≠0,所以自变量x的取值范围就可以求出. 【解答】解:根据题意得:x,﹣1≥0且x+1≠0, 解得:x≥1. 故答案为:x≥1. 【点评】考查使得分式和二次根式有意义的知识.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.   13.(3分)(2017•营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是 15 个. 【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数. 【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%, 所以摸到蓝球的概率为75%, 因为20×75%=15(个), 所以可估计袋中蓝色球的个数为15个. 故答案为15. 【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.   14.(3分)(2017•营口)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是 k>且k≠1 . 【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可. 【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0, 解得:k>且k≠1. 故答案为:k>且k≠1. 【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.   15.(3分)(2017•营口)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为 π﹣2 . 【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE的面积,即可求出答案. 【解答】解:∵四边形ABCD是矩形, ∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°, ∴CE=BC=4, ∴CE=2CD, ∴∠DEC=30°, ∴∠DCE=60°, 由勾股定理得:DE=2, ∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=﹣×2×2=, 故答案为:. 【点评】本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确求出扇形CEB′和三角形CDE的面积,题目比较好,难度适中.   16.(3分)(2017•营口)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为 ﹣=8 . 【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可. 【解答】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x, 根据题意可得:﹣=8, 故答案为:﹣=8. 【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系.   17.(3分)(2017•营口)在矩形纸片ABCD中,AD=

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开