分享
专项训练七 直角三角形的边角关系.doc
下载文档

ID:2806902

大小:1.12MB

页数:5页

格式:DOC

时间:2024-01-03

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专项 训练 直角三角形 边角 关系
优秀领先 飞翔梦想 成人成才 专项训练七 直角三角形的边角关系 一、选择题 1.tan45°的值为(  ) A. B.1 C. D. 2.如图所示,△ABC的顶点是正方形网格的格点,则sinB的值为(  ) A. B. C. D.1 第2题图 第3题图 3.(2016·三明中考)如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是(  ) A.msin35° B.mcos35° C. D. 4.(2016·安徽四模)在△ABC中,若+=0,则∠C的度数为(  ) A.30° B.60° C.90° D.120° 5.(2016·邢台二模)如图,在Rt△ABC中,∠B=90°,cosA=,则tanA的值为(  ) A. B. C. D. 第5题图 第6题图 第7题图 第8题图 6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=,BC=2,则sin∠ACD的值为(  ) A. B. C. D. 7.(2016·萍乡二模)如图,在△ABC中,点E在AC上,点G在BC上,连接EG,AE=EG=5,过点E作ED⊥AB,垂足为D,过点G作GF⊥AC,垂足为F,此时恰有DE=GF=4.若BG=2,则sinB的值为(  ) A. B. C. D. 8.★(济南中考)如图,直线y=-x+2与x轴、y轴分别交于A,B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是(  ) A.(,3) B.(,) C.(2,2) D.(2,4) 二、填空题 9.计算:cos30°-sin60°=________. 10.(2016·陕西中考)运用科学计算器计算: 3sin73°52′≈________(结果精确到0.1). 11.(2016·天桥区一模)如图,△ABC中,∠ACB=90°,tanA=,AB=15,AC=________. 第11题图 第12题图 第13题图 第14 题图 12.(2016·澄迈县二模)如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1∶1.5,上底宽为6m,路基高为4m,则路基的下底宽为________m. 13.(2016·大连中考)如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为________海里(结果取整数,参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4). 14.★(2016·南通一模)如图,Rt△ABC中,∠ACB=90°,CM为AB边上的中线,AN⊥CM,交BC于点N.若CM=3,AN=4,则tan∠CAN的值为________. 三、解答题 15.(2016·济宁中考)某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC的坡度为1∶. (1)求新坡面的坡角α; (2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. 16.(2016·宜宾中考)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号). 17.(济宁中考)在一个三角形中,各边和它所对角的正弦的比相等,即==,利用上述结论可以求解如下题目,如:在△ABC中,若∠A=45°,∠B=30°,a=6,求b的值. 解:在△ABC中,∵=,∴b====3. 解决问题: 如图,甲船以每小时30海里的速度向正北方航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟后到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里. (1)判断△A1A2B2的形状,并给出证明; (2)乙船每小时航行多少海里? 参考答案与解析 1.B 2.B 3.A 4.D 5.D 6.A 7.C 解析:在Rt△ADE与Rt△EFG中, ∴Rt△ADE≌Rt△EFG(HL),∴∠A=∠GEF.∵∠A+∠AED=90°,∴∠GEF+∠AED=90°,∴∠DEG=90°.过点G作GH⊥AB于点H,则四边形DEGH为矩形,∴GH=DE=4.在Rt△BGH中,sinB===.故选C. 8.A 解析:过点O′作O′C⊥x轴于点C.∵直线y=-x+2与x轴、y轴分别交于A,B两点,∴点A,B的坐标分别为(2,0),(0,2),∴tan∠BAO===,∴∠BAO=30°.∵把△AOB沿直线AB翻折后得到△AO′B,∴O′A=OA=2,∠O′AO=60°,∴CA=O′A=,O′C=O′A·sin∠O′AC=2×=3,∴OC=OA-CA=2-=,∴点O′的坐标为(,3).故选A. 9.0 10.11.9 11.9 12.18 13.11 解析:过点P作PC⊥AB于点C.依题意可得∠A=30°,∠B=55°.在Rt△PAC中,∵PA=18海里,∠A=30°,∴PC=PA=×18=9(海里).在Rt△PBC中,∵PC=9海里,∠B=55°,∴PB=≈≈11(海里). 14. 解析:∵∠ACB=90°,CM为AB边上的中线,∴AB=2CM=6,CM=BM,∴∠B=∠MCB.∵AN⊥CM,∴∠CAN+∠ACM=90°.又∵∠ACM+∠MCB=90°,∴∠CAN=∠MCB,∴∠B=∠CAN.又∵∠ACN=∠BCA,∴△CAN∽△CBA,∴===,∴tan∠CAN==. 15.解:(1)∵新坡面的坡度为1∶,∴tanα==,∴α=30°; (2)文化墙PM不需要拆除.理由如下:过点C作CD⊥AB于点D,则CD=6米.∵坡面BC的坡度为1∶1,新坡面AC的坡度为1∶,∴BD=CD=6米,AD=CD=6米,∴AB=AD-BD=(6-6)米<8米,∴文化墙PM不需要拆除. 16.解:过点C作CF⊥AB于点F,则BF=CD=4米,CF=BD.设AF=x米.在Rt△ACF中,tan∠ACF=,∠ACF=α=30°,则CF==x米.在Rt△ABE中,AB=AF+BF=(x+4)米,tan∠AEB=,∠AEB=β=60°,则BE==(x+4)米.∵CF=BD=DE+BE,∴x=3+(x+4),解得x=.则AB=+4=(米). 答:树高AB是米. 17.解:(1)△A1A2B2是等边三角形.证明如下:由题意可得A2B2=10海里,A1A2=30×=10(海里),∴A1A2=A2B2.又∵∠A1A2B2=180°-120°=60°,∴△A1A2B2是等边三角形; (2)由(1)可知△A1A2B2是等边三角形,∴A1B2=A1A2=10海里,∠A2A1B2=60°,∴∠B1A1B2=105°-60°=45°.由题意可知∠CB1A1=180°-105°=75°,∴∠B2B1A1=75°-15°=60°.在△A1B2B1中,由正弦定理得=,∴B1B2=·sin45°=×=(海里).乙船的速度为÷=20(海里/时). 答:乙船每小时航行20海里. 第 5 页 共 5 页

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开