分享
课时小练习.doc
下载文档

ID:2806260

大小:1.72MB

页数:49页

格式:DOC

时间:2024-01-03

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
课时 练习
优秀领先 飞翔梦想 成人成才 第一章 勾股定理 1 探索勾股定理 第1课时 探索勾股定理                    1.已知直角三角形两直角边的长分别为12,16,则其斜边的长为(  ) A.16 B.18 C.20 D.28 2.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=________.        3.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m.现需要在相对的顶点间用一块木板加固,则木板的长为________. 4.如图,在Rt△ABC中,AC=8cm,BC=17cm. (1)求AB的长; (2)求阴影长方形的面积. 5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=5,AC=12,求AB、CD的长. 第2课时 验证勾股定理及其简单应用           1.从某电线杆离地面8m处拉一根长为10m的缆绳,这条缆绳在地面的固定点到电线杆底部的距离为(  ) A.2m B.4m C.6m D.8m 2.图中不能用来证明勾股定理的是(  ) 3.如图,小丽和小明一起去公园荡秋千,秋千绳索OA长5m.小丽坐上秋千后,小明在距离秋千3m的点B处保护.当小丽荡至小明处时,试求小丽上升的高度AC. 4.如图,在海上观察所A处,我边防海警发现正北方向6km的B处有一可疑船只正在向其正东方向8km的C处行驶,我边防海警即刻派船只前往拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住? 2 一定是直角三角形吗                        1.下列各组数中不是勾股数的是(  ) A.9、12、15 B.41、40、9 C.25、7、24 D.6、5、4 2.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件中不能判断△ABC是直角三角形的是(  ) A.∠A=∠C-∠B B.a∶b∶c=2∶3∶4 C.a2=b2-c2 D.a=3,b=5,c=4 3.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的(  ) A.北偏东75°的方向上 B.北偏东65°的方向上 C.北偏东55°的方向上 D.无法确定 4.已知a,b,c是△ABC的三边长,且满足关系式(a2+b2-c2)2+|a-b|=0,则△ABC的形状为______________. 5.在△ABC中,AB=8,BC=15,CA=17,则△ABC的面积为________. 6.如图,每个小正方形的边长均为1. (1)直接计算结果:AB2=________,BC2=________,AC2=________; (2)请说明△ABC的形状. 3 勾股定理的应用                         1.如图是一个长方形公园的示意图,游人从A景点走到C景点至少要走(  ) A.600m B.800m C.1000m D.1400m      2.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条笔直的水管,则水管的长为(  ) A.45m B.40m C.50m D.56m 3.在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处折断倒下,如图,量得倒下部分的长是10米.请你帮张大爷分析一下,大树倒下时会砸到张大爷的房子吗?(  ) A.一定不会 B.可能会 C.一定会 D.以上答案都不对 4.如图,一个无盖圆柱形纸筒的底面周长是60cm,高是40cm.一只小蚂蚁在圆筒底部的A处,它想吃到上底面上与点A相对的点B处的蜜糖,试问蚂蚁爬行的最短路程是多少? 第二章 实 数 1 认识无理数 1.下列各数中,是无理数的是(  ) A.0.3333… B. C.0.1010010001 D.- 2.下列说法正确的是(  ) A.0.121221222…是有理数 B.无限小数都是无理数 C.面积为5的正方形的边长是有理数 D.无理数是无限小数 3.若面积为15的正方形的边长为x,则x的范围是(  ) A.3<x<4 B.4<x<5 C.5<x<6 D.6<x<7 4.有六个数:0.123,(-1.5)3,3.1416,,-2π,0.1020020002….若其中无理数的个数为x,整数的个数为y,则x+y=________. 5.下列各数中哪些是有理数?哪些是无理数? |+5|,-789,π,0.0,3.6161161116…,3.1415926,0,-5%,,. 6.已知半径为1的圆. (1)它的周长l是有理数还是无理数?说说你的理由; (2)估计l的值(结果精确到十分位). 2 平方根 第1课时 算术平方根 1.数5的算术平方根为(  ) A. B.25 C.±25 D.± 2.如果a-3是一个数的算术平方根,那么a的值可能为(  ) A.0 B.1 C.2 D.4 3.下列有关说法正确的是(  ) A.0.16的算术平方根是±0.4 B.(-6)2的算术平方根是-6 C.的算术平方根是±9 D.的算术平方根是 4.要切一块面积为0.81m2的正方形钢板,则它的边长是________. 5.若|a-2|++(c-5)2=0,则a-b+c=________. 6.求下列各数的算术平方根: (1)0.25; (2)13; (3); (4)1. 7.如图,某玩具厂要制作一批体积为100000cm3的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形,则底面边长应是多少? 第2课时 平方根                       1.81的平方根是(  ) A.9 B.-9 C.±9 D.27 2.关于平方根,下列说法正确的是(  ) A.任何一个数都有两个平方根,并且它们互为相反数 B.负数没有平方根 C.任何一个数都只有一个算术平方根 D.以上都不对 3.如果一个数的一个平方根是-16,那么这个数是________. 4.计算: (1)()2=________; (2)=________. 5.求下列各数的平方根: (1)25; (2); (3)0.16; (4)(-2)2. 6.若一个正数的平方根为2x+1和x-7,求x和这个正数. 3 立方根                         1.9的立方根是(  ) A.3 B.±3 C. D.± 2.下列说法中正确的是(  ) A.-4没有立方根 B.1的立方根是±1 C.的立方根是 D.-5的立方根是 3.已知(x-1)3=64,则x的值为________. 4.-的立方根为________. 5.求下列各式的值: (1); (2); (3)-. 6.已知3x+1的平方根是±4,求9x+19的立方根. 7.已知第一个立方体纸盒的棱长是6cm,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127cm3,求第二个立方体纸盒的棱长. 4 估 算                         1.在3,0,-2,-这四个数中,最小的数是(  ) A.3 B.0 C.-2 D.- 2.估计+1的值应在(  ) A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间 3.的整数部分是________. 4.比较大小:3________4. 5 用计算器开方                           1.用计算器求2018的算术平方根时,下列四个键中,必须按的键是(  ) A. B. C. D. 2.计算器计算的按键顺序为,其显示的结果为________. 3.用科学计算器计算:+23≈________(结果精确到0.01). 4.在某项工程中,需要一块面积为3平方米的正方形钢板,应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么请你算一算: (1)如果精确到十分位,正方形的边长是多少? (2)如果精确到百分位呢? 6 实 数                          1.的相反数是(  ) A.- B. C. D.2 2.下列各数是有理数的是(  ) A.π B. C. D. 3.如图,M,N,P,Q是数轴上的四个点,这四个点中最适合表示的点是________. 4.计算: (1)+-; (2)|1-|-()2+(6-π)0. 5.在数轴上表示下列各数,并把这些数用“<”连接起来. -1,,2,π,0. 7 二次根式 第1课时 二次根式及其性质                           1.下列式子中,不是二次根式的是(  ) A. B. C. D. 2.下列根式中属于最简二次根式的是(  ) A. B. C. D. 3.化简的结果是(  ) A. B.2 C.3 D.4 4.下列变形正确的是(  ) A.=× B.=×=4×=2 C.== D.=25-24=1 5.的倒数是________. 6.化简: (1)=________; (2)=________; (3)=________. 7.化简: (1); (2). 第2课时 二次根式的运算                       1.下列根式中,能与合并的是(  ) A. B. C. D. 2.计算×的结果为(  ) A.2 B.4 C.6 D.36 3.下列计算正确的是(  ) A.2+3=5 B.÷=2 C.5×5=5 D.=2 4.计算-9的结果是(  ) A. B.- C.- D. 5.若a=2+3,b=2-3,则下列等式成立的是(  ) A.ab=1 B.ab=-1 C.a=b D.a=-b 6.计算: (1)(+)(-); (2)2+3; (3)-; (4)(-1)2-2. 第3课时 二次根式的混合运算                      1.化简-(-2)得(  ) A.-2 B.-2 C.2 D.4-2 2.下列计算正确的是(  ) A.÷(-)=-1 B.=- C.+= D.=6 3.估计×+的运算结果应在(  ) A.1到2之间 B.2到3之间 C.3到4之间 D.4到5之间 4.计算: (1)(5+-6)÷; (2)(2-1)2+(+2)(-2); (3)(2-)0+|2-|+(-1)2017-×; (4)÷+(-1). 第三章 位置与坐标 1 确定位置                         1.如果影剧院的座位8排5座用(8,5)表示,那么(4,6)表示(  ) A.6排4座 B.4排6座 C.4排4座 D.6排6座 2.下列表述中,位置确定的是(  ) A.北偏东30° B.东经118°,北纬24° C.淮海路以北,中山路以南 D.银座电影院第2排 3.小明向班级同学介绍自己家的位置时,最恰当的表述是(  ) A.在学校的东边 B.在东南方向800米处 C.距学校800米处 D.在学校东南方向800米处 4.生态园位于县城东北方向5公里处,下图表示准确的是(  ) 5.如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示.这样,棋子①的位置可记为(C,4),棋子②的位置可记为(E,3),则棋子⑨的位置可记为________. 6.如图是游乐园的一角. (1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对________表示,碰碰车用数对________表示,摩天轮用数对________表示; (2)已知秋千在大门以东400m,再往北300m处,请你在图中标出秋千的位置. 2 平面直角坐标系 第1课时 平面直角坐标系                           1.下列选项中,平面直角坐标系的画法正确的是(  ) 2.在平面直角坐标系中,点(6,-2)在(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.如图,笑脸盖住的点的坐标可能为(  ) A.(5,2) B.(3,-4) C.(-4,-6) D.(-1,3) 4.已知点A的坐标为(-2,-3),则点A到x轴的距离为________,到原点的距离为________. 5.在如图所示的平面直角坐标系xOy中. (1)分别标出点A(4,2),B(0,6),C(-1,3),D(-2,-3),E(2,-4),F(3,0)的位置; (2)写出点M,N,P的坐标. 第2课时 平面直角坐标系中点的坐标特点                           1.下列各点在第四象限的是(  ) A.(-1,2) B.(3,-5) C.(-2,-3) D.(2,3) 2.下列各点中,在y轴上的是(  ) A.(0,3) B.(-3,0) C.(-1,2) D.(-2,-3) 3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为(  ) A.(0,2) B.(-2,0) C.(4,0) D.(0,-2) 5.已知M(1,-2),N(-3,-2),则直线MN与x轴、y轴的位置关系分别为(  ) A.相交、相交 B.平行、平行 C.垂直、平行 D.平行、垂直 6.已知A(0,1),B(2,0),C(4,3). (1)在如图所示的平面直角坐标系中描出各点,画出△ABC; (2)求△ABC的面积. 第3课时 建立平面直角坐标系描述图形的位置                         1.如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为(  ) A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)    2.如图,已知等腰三角形ABC.若要建立直角坐标系求各顶点的坐标,则你认为最合理的方法是(  ) A.以BC的中点O为坐标原点,BC所在的直线为x轴,AO所在的直线为y轴 B.以B点为坐标原点,BC所在的直线为x轴,过B点作x轴的垂线为y轴 C.以A点为坐标原点,平行于BC的直线为x轴,过A点作x轴的垂线为y轴 D.以C点为坐标原点,平行于BA的直线为x轴,过C点作x轴的垂线为y轴 3.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,如果所在位置的坐标为(-3,1),所在位置的坐标为(2,-1),那么所在位置的坐标为(  ) A.(0,1) B.(4,0) C.(-1,0) D.(0,-1) 4.如图,长方形ABCD的长AD=6,宽AB=4.请建立适当的直角坐标系使得C点的坐标为(-3,2),并且求出其他顶点的坐标. 3 轴对称与坐标变化                           1.点P(3,-5)关于y轴对称的点的坐标为(  ) A.(-3,-5) B.(5,3) C.(-3,5) D.(3,5) 2.已知点P(a,3)和点Q(4,-3)关于x轴对称,则a的值为(  ) A.-4 B.-3 C.3 D.4 3.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是(  ) A.1 B.-1 C.5 D.-5 4.将△ABC各顶点的横坐标都乘以-1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项中正确表示这种变换的是(  ) 5.已知点M(a,-1)和点N(2,b)不重合.当M、N关于________对称时,a=-2,b=-1. 6.如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3). (1)在图中作出△ABC关于y轴对称的图形△A1B1C1; (2)写出点C1的坐标; (3)求△ABC的面积. 第四章 一次函数 1 函 数                           1.有下面四个关系式:①y=|x|;②|y|=x;③2x2-y=0;④y=(x≥0).其中y是x的函数的是(  ) A.①② B.②③ C.①②③ D.①③④ 2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v和行驶时间t之间的关系用图象表示,其图象可能是(  ) 3.某学习小组做了一个实验:从一幢100m高的楼顶随手放下一只苹果,测得有关数据如下: 下落时间t(s),1,2,3,4下落高度h(m),5,20,45,80则下列说法错误的是(  ) A.苹果每秒下落的高度越来越大 B.苹果每秒下落的高度不变 C.苹果下落的速度越来越快 D.可以推测,苹果落到地面的时间不超过5秒 4.一个正方形的边长为3cm,它的各边边长减少xcm后,得到的新正方形的周长为ycm,则y与x之间的函数关系式是__________. 5.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元. (1)写出y与x之间的函数关系式; (2)当老师带领20名学生参观时,门票的总费用为多少元? 2 一次函数与正比例函数                           1.下列函数中,是一次函数的有(  ) ①y=πx;②y=2x-1;③y=;④y=2-3x;⑤y=x2-1. A.4个 B.3个 C.2个 D.1个 2.已知y=x+2-3b是正比例函数,则b的值为(  ) A. B. C.0 D.任意实数 3.若y=(m-2)x+(m2-4)是正比例函数,则m的值是(  ) A.2 B.-2 C.±2 D.任意实数 4.汽车开始行驶时,油箱内有油40升.若每小时耗油5升,则油箱内余油量y(升)与行驶时间t(小时)之间的函数关系式为(  ) A.y=40t+5 B.y=5t+40 C.y=5t-40 D.y=40-5t 5.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)之间的关系式为____________. 6.甲、乙两地相距520km,一辆汽车以80km/h的速度从甲地开往乙地. (1)写出汽车距乙地的路程s(km)与行驶时间t(h)之间的函数关系式(不要求写出自变量的取值范围); (2)当行驶时间为4h时,求汽车距乙地的路程. 3 一次函数的图象 第1课时 正比例函数的图象和性质                           1.正比例函数y=3x的大致图象是(  ) 2.已知直线y=-2x上有两点(-1,a),(2,b),则a与b的大小关系是(  ) A.a>b B.a<b C.a=b D.无法确定 3.已知正比例函数y=kx(k≠0),点(2,-3)在该函数的图象上,则y随x的增大而(  ) A.增大 B.减小 C.不变 D.不能确定 4.画出正比例函数y=x的图象,并结合图象回答下列问题: (1)点(4,2)是否在正比例函数y=x的图象上?点(-2,-2)呢? (2)随着x值的增大,y的值如何变化? 5.已知正比例函数y=(2-m)x|m-2|,且y随x的增大而减小,求m的值. 第2课时 一次函数的图象和性质                           1.函数y=-2x+3的图象大致是(  ) 2.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是(  ) A.a>b B.a<b C.a=b D.与m的值有关 3.在一次函数y=(2m+2)x+4中,y随x的增大而增大,那么m的值可以是(  ) A.0 B.-1 C.-1.5 D.-2 4.把直线y=-5x+6向下平移6个单位长度,得到的直线的表达式为(  ) A.y=-x+6 B.y=-5x-12 C.y=-11x+6 D.y=-5x 5.已知一次函数y=(m+2)x+(3-n). (1)当m满足什么条件时,y随x的增大而增大? (2)当m,n满足什么条件时,函数图象经过原点? 4 一次函数的应用 第1课时 确定一次函数的表达式                           1.某正比例函数的图象如图所示,则此函数的表达式为(  ) A.y=-x B.y=x C.y=-2x D.y=2x      2.已知y与x成正比例,当x=1时,y=8,则y与x之间的函数表达式为(  ) A.y=8x B.y=2x C.y=6x D.y=5x 3.如图,直线AB对应的函数表达式是(  ) A.y=-x+2 B.y=x+3 C.y=-x+2 D.y=x+2 4.如图,长方形ABCO在平面直角坐标系中,且顶点O为坐标原点.已知点B(4,2),则对角线AC所在直线的函数表达式为____________. 5.已知直线y=kx+b经过点A(0,3)和B(1,5). (1)求这个函数的表达式; (2)当x=-3时,y的值是多少? 第2课时 单个一次函数图象的应用                           1.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(h)之间的函数关系用图象可以表示为(  ) 2.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为(  ) A.x=2 B.y=2 C.x=-3 D.y=-3 3.周末小丽从家出发骑单车去公园,途中,她在路边的便利店购买一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是(  ) A.小丽从家到达公园共用了20分钟 B.公园离小丽家的距离为2000米 C.小丽在便利店的时间为15分钟 D.便利店离小丽家的距离为1000米 4.若一次函数y=ax+b的图象经过点(2,3),则关于x的方程ax+b=3的解为________. 5.某工厂加工一批零件,每名工人每天的薪金y(元)与生产件数x(件)之间的函数关系如图所示.已知当生产件数x大于等于20件时,y与x之间的函数表达式为y=4x+b.当工人生产的件数为20件时

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开