温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2021
学年度
九年级
数学
下册
期末
达标
检测
试卷
原卷版
2021年度九年级数学下册期末达标检测试卷(2)
说明:试卷总分120分,答题时间90分钟。
一、单项选择题(本大题共8个小题,每小题4分,共32分)
1.(2020•泰州模拟)下列几何体中,主视图与俯视图不相同的是( )
A.正方体 B.四棱锥 C.圆柱 D.球
2.(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是( )
A. B. C. D.
3.(2019安徽)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=k/x的图象上,则实数k的值为( )
A.3 B. C.﹣3 D.﹣
4.(2019广西贺州)已知,一次函数与反比例函数在同一直角坐标系中的图象
可能
5.(2020•内江模拟)已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为( )
A.1:1 B.1:3 C.1:6 D.1:9
6.(2019•广西贵港)如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6,则线段CD的长为( )
A.2 B.3 C.2 D.5
7.(2019•湖南长沙)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是( )
A.2 B.4 C.5 D.10
8.如图,正六边形ABCDEF的边长为2,分别以点A,D为圆心,以AB,DC为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是( )
A.6﹣π B.6﹣π C.12﹣π D.12﹣π
二、填空题(本大题共8个小题,每小题4分,共32分)
9.若点(3,5)在反比例函数的图象上,则k= .
10.(2020•东营模拟)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为 .
11. (2019•河北省)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=____。
x2+3x+2 12.(2019湖北孝感)如图,双曲线y=9/x(x>0)经过矩形OABC的顶点B,双曲线y=k/x(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为 .
13. (2019黑龙江省龙东地区) 一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为________.
14.(2019•浙江宁波)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为 米.(精确到1米,参考数据:≈1.414,≈1.732)
15.(2019•海南省)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF= .
16.(2019江苏淮安)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH沿CH折叠,点B落在矩形内点P处,连接AP,则tan∠HAP= .
三、解答题(本大题有5小题,共56分)
17.(8分)(2019齐齐哈尔)计算:()﹣1+﹣6tan60°+|2﹣4|
18.(12分)(2019年广西柳州市)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2),将线段AB绕点A顺时针旋转90°得到线段AC,反比例函数y=(k≠0,x>0)的图象经过点C.
(1)求直线AB和反比例函数y=(k≠0,x>0)的解析式;
(2)已知点P是反比例函数y=(k≠0,x>0)图象上的一个动点,求点P到直线AB距离最短时的坐标.
19.(10分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).
(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;
(2)分别写出B、C两点的对应点B′、C′的坐标;
(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.
20.(14分)(2019安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.
(1)求证:△PAB∽△PBC;
(2)求证:PA=2PC;
(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.
21.(12分)(2019▪广西池河)如图,在河对岸有一棵大树A,在河岸B点测得A在北偏东60°方向上,向东前进120m到达C点,测得A在北偏东30°方向上,求河的宽度(精确到0.1m).参考数据:≈1.414,≈1.732.