温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
山西省
沁县
中学
第六
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数,当时,,则( )
A. B. C.1 D.
2.若实数满足不等式组则的最小值等于( )
A. B. C. D.
3.若实数x,y满足条件,目标函数,则z 的最大值为( )
A. B.1 C.2 D.0
4.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( )
A. B. C. D.
5.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( )
A.甲 B.乙 C.丙 D.丁
6.如果实数满足条件,那么的最大值为( )
A. B. C. D.
7.设,,,则,,三数的大小关系是
A. B.
C. D.
8.设数列是等差数列,,.则这个数列的前7项和等于( )
A.12 B.21 C.24 D.36
9.已知复数满足,则( )
A. B.2 C.4 D.3
10.已知集合(),若集合,且对任意的,存在使得,其中,,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )
A. B. C. D.
11.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则( )
A.30° B.45° C.60° D.75°
12.复数 (i为虚数单位)的共轭复数是
A.1+i B.1−i C.−1+i D.−1−i
二、填空题:本题共4小题,每小题5分,共20分。
13.已知等比数列的前项和为,若,则的值是 .
14.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.
15.某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有__________种.
16.已知函数在点处的切线经过原点,函数的最小值为,则________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)求证:当时,;
(2)若对任意存在和使成立,求实数的最小值.
18.(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.
(1)求这个样本数据的中位数和众数;
(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.
19.(12分)为了加强环保知识的宣传,某学校组织了垃圾分类知识竟赛活动.活动设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照、、、、分组,绘成频率分布直方图如图:
(1)分别求出所抽取的人中得分落在组和内的人数;
(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.
20.(12分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:
(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);
(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;
(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率. 现对生产线上生产的零件进行成箱包装出售,每箱个. 企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元. 若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用. 现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.
21.(12分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn.
22.(10分)的内角,,的对边分别为,,已知,.
(1)求;
(2)若的面积,求.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.
【题目详解】
,
时,,,∴,
由题意,∴.
故选:A.
【答案点睛】
本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.
2、A
【答案解析】
首先画出可行域,利用目标函数的几何意义求的最小值.
【题目详解】
解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)
由得,
由得,平移,
易知过点时直线在上截距最小,
所以.
故选:A.
【答案点睛】
本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.
3、C
【答案解析】
画出可行域和目标函数,根据平移得到最大值.
【题目详解】
若实数x,y满足条件,目标函数
如图:
当时函数取最大值为
故答案选C
【答案点睛】
求线性目标函数的最值:
当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;
当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.
4、D
【答案解析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.
【题目详解】
3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.
故选:D.
【答案点睛】
本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.
5、D
【答案解析】
根据演绎推理进行判断.
【题目详解】
由①②④可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁.
故选:D.
【答案点睛】
本题考查演绎推理,掌握演绎推理的定义是解题基础.
6、B
【答案解析】
解:当直线过点时,最大,故选B
7、C
【答案解析】
利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.
【题目详解】
由,
,
,
所以有.选C.
【答案点睛】
本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.
8、B
【答案解析】
根据等差数列的性质可得,由等差数列求和公式可得结果.
【题目详解】
因为数列是等差数列,,
所以,即,
又,
所以,,
故
故选:B
【答案点睛】
本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.
9、A
【答案解析】
由复数除法求出,再由模的定义计算出模.
【题目详解】
.
故选:A.
【答案点睛】
本题考查复数的除法法则,考查复数模的运算,属于基础题.
10、C
【答案解析】
根据题目中的基底定义求解.
【题目详解】
因为,
,
,
,
,
,
所以能作为集合的基底,
故选:C
【答案点睛】
本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.
11、C
【答案解析】
如图所示:作垂直于准线交准线于,则,故,得到答案.
【题目详解】
如图所示:作垂直于准线交准线于,则,
在中,,故,即.
故选:.
【答案点睛】
本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.
12、B
【答案解析】
分析:化简已知复数z,由共轭复数的定义可得.
详解:化简可得z=
∴z的共轭复数为1﹣i.
故选B.
点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、-2
【答案解析】
试题分析:,
考点:等比数列性质及求和公式
14、
【答案解析】
首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.
【题目详解】
根据“钟型验证码” 中间数字最大,然后向两边对称递减,所以中间的数字可能是.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
所以该验证码的中间数字是7的概率为.
故答案为:
【答案点睛】
本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.
15、1344
【答案解析】
分四种情况讨论即可
【题目详解】
解:数学排在第一节时有:
数学排在第二节时有: