分享
专题23.2 旋转章末题型过关卷(人教版)(解析版).docx
下载文档

ID:2805564

大小:355.20KB

页数:23页

格式:DOCX

时间:2024-01-03

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题23.2 旋转章末题型过关卷人教版解析版 专题 23.2 旋转 题型 过关 人教版 解析
第23章 旋转章末题型过关卷 【人教版】 参考答案与试题解析 一.选择题(共10小题,满分30分,每小题3分) 1.(3分)(2022•湖北)在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣1,﹣1),(1,﹣2),将△ABC绕点C顺时针旋转90°,则点A的对应点的坐标为(  ) A.(4,1) B.(4,﹣1) C.(5,1) D.(5,﹣1) 【分析】先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出△ABC绕点C顺时针旋转90°后点A的对应点的A′,然后写出点A′的坐标即可. 【解答】解:如图,A点坐标为(0,2), 将△ABC绕点C顺时针旋转90°,则点A的对应点的A′的坐标为(5,﹣1). 故选:D. 2.(3分)(2022•宁津县二模)如图,将Rt△ABC(∠B=25°)绕点A顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于(  ) A.65° B.80° C.105° D.115° 【分析】由三角形的外角性质得出∠BAB1=∠C+∠B=115°,即可得出结论. 【解答】解:∵C,A,B1在同一条直线上,∠C=90°,∠B=25°, ∴∠BAB1=∠C+∠B=115°.故选:D. 3.(3分)(2022•焦作二模)若两个图形关于某一点成中心对称,那么下列说法.正确的是(  ) ①对称点的连线必过对称中心; ②这两个图形一定全等; ③对应线段一定平行(或在一条直线上)且相等; ④将一个图形绕对称中心旋转180°必定与另一个图形重合. A.①② B.①③ C.①②③ D.①②③④ 【分析】根据(1)中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点. (2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,判断各选项即可得出答案. 【解答】解:根据分析可得:①对称点的连线必过对称中心,正确; ②中心对称的两个图形一定全等,正确; ③对应线段一定平行(或在一条直线上)且相等,正确; ④根据定义可得此说法正确; ①②③④均符合题意. 故选:D. 4.(3分)(2022春•邯郸校级期末)如图,平面直角坐标系内Rt△ABO的顶点A坐标为(3,1),将△ABO绕O点逆时针旋转90°后,顶点A的坐标为(  ) A.(﹣1,3) B.(1,﹣3) C.(3,1) D.(﹣3,1) 【分析】画出旋转后图形的位置,根据A点坐标可得OB、AB的长度,从而确定对应线段的长度,根据旋转后A点所在象限,确定其坐标. 【解答】解:将△ABO绕O点逆时针旋转90°后,位置如图所示. ∵A(3,1),∴OB=3,AB=1. ∴OB′=3,A′B′=1. ∵A′在第二象限, ∴A′(﹣1,3). 故选:A. 5.(3分)(2022秋•明山区校级月考)将点P(﹣2,3)向上平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是(  ) A.(2,6) B.(2,﹣6) C.(2,﹣3) D.(2,0) 【分析】首先利用平移变化规律得出P1(﹣2,6),进而利用关于原点对称点的坐标性质得出P2的坐标. 【解答】解:∵点P(﹣2,3)向上平移3个单位得到点P1, ∴P1(﹣2,6), ∵点P2与点P1关于原点对称, ∴P2的坐标是:(2,﹣6). 故选:B. 6.(3分)(2022•香坊区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是(  ) A.50° B.60° C.40° D.30° 【分析】根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解. 【解答】解:∵将△OAB绕点O逆时针旋转80° ∴∠A=∠C,∠AOC=80° ∴∠DOC=80°﹣α ∵∠A=2∠D=100° ∴∠D=50° ∵∠C+∠D+∠DOC=180° ∴100°+50°+80°﹣α=180° 解得α=50° 故选:A. 7.(3分)(2022•涪城区校级自主招生)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠AA′B′=20°,则∠BAA′的度数是(  ) A.70° B.65° C.60° D.55° 【分析】由旋转的性质可得AC=CA',∠BAC=∠CA'B',由等腰直角三角形的性质可求∠CA'B'=25°=∠BAC,即可求解. 【解答】解:∵将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C连接AA′ ∴AC=CA',∠BAC=∠CA'B', ∴∠CAA'=∠CA'A=45°,且∠AA′B′=20°, ∴∠CA'B'=25°=∠BAC, ∴∠BAA'=∠BAC+∠CAA'=70° 故选:A. 8.(3分)(2022秋•海拉尔区校级月考)下列是中心对称图形的有(  ) (1)线段;(2)角;(3)等边三角形;(4)正方形;(5)平行四边形;(6)矩形;(7)等腰梯形. A.2个 B.3个 C.4个 D.5个 【分析】把一个图形绕一点旋转180度,能够与原来的图形重合,则这个点就叫做对称点,这个图形就是中心对称图.依据定义即可进行判断. 【解答】解:由中心对称图形的概念可知,(1)(4)(5)(6)是中心对称图形,符合题意; (2)(3)(7)不是中心对称图形,是轴对称图形,不符合题意. 故中心对称的图形有4个. 故选:C. 9.(3分)(2022春•洪雅县期末)如图,在△ABC中,∠BAC=55°,∠C=20°,将△ABC绕点A逆时针旋转α角度(0<α<180°)得到△ADE,若DE∥AB,则α的值为(  ) A.65° B.75° C.85° D.130° 【分析】根据三角形内角和定理求出∠ABC,根据旋转得出∠EDA=∠ABC=105°,根据平行线的性质求出∠DAB即可. 【解答】解:∵在△ABC中,∠BAC=55°,∠C=20°, ∴∠ABC=180°﹣∠BAC﹣∠C=180°﹣55°﹣20°=105°, ∵将△ABC绕点A逆时针旋转α角度(0<α<180°)得到△ADE, ∴∠ADE=∠ABC=105°, ∵DE∥AB, ∴∠ADE+∠DAB=180°, ∴∠DAB=180°﹣∠ADE=75° ∴旋转角α的度数是75°, 故选:B. 10.(3分)(2022春•龙岗区期末)如图,点E是等边三角形△ABC边AC的中点,点D是直线BC上一动点,连接ED,并绕点E逆时针旋转90°,得到线段EF,连接DF.若运动过程中AF的最小值为3+1,则AB的值为(  ) A.2 B.43 C.23 D.4 【分析】由“SAS”可证△BDE≌△NFE,可得∠N=∠CBE=30°,则点N在与AN成30°的直线上运动,当AF'⊥F'N时,AF'有最小值,即可求解. 【解答】解:如图,连接BE,延长AC至N,使EN=BE,连接FN, ∵△ABC是等边三角形,E是AC的中点, ∴AE=EC,∠ABE=∠CBE=30°,BE⊥AC, ∴∠BEN=∠DEF=90°,BE=3AE, ∴∠BED=∠CEF, 在△BDE和△NFE中, BE=EN∠BED=∠NEFDE=EF, ∴△BDE≌△NFE(SAS), ∴∠N=∠CBE=30°, ∴点N在与AN成30°的直线上运动, ∴当AF'⊥F'N时,AF'有最小值, ∴AF'=12AN, ∴3+1=12(AE+3AE), ∴AE=2, ∴AC=4, 故选:D. 二.填空题(共6小题,满分18分,每小题3分) 11.(3分)(2022春•崂山区期末)如图,风车图案围绕着旋转中心至少旋转 60 度,会和原图案重合. 【分析】根据旋转角及旋转对称图形的定义结合图形特点作答. 【解答】解:∵360°÷6=60°, ∴该图形绕中心至少旋转60度后能和原来的图案互相重合. 故答案为:60. 12.(3分)(2022•荆州)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有 4 种. 【分析】利用轴对称图形以及中心对称图形的性质与定义,进而得出符合题意的答案. 【解答】解:如图所示:这个格点正方形的作法共有4种. 故答案为:4. 13.(3分)(2022•涪城区校级自主招生)如图,直线y=−33x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是 (23,4) . 【分析】利用直线解析式求出点A、B的坐标,从而得到OA、OB的长,然后判断出∠BAO=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得AB=2OB,根据旋转角是60°得到AB′⊥x轴,然后写出点B′的坐标即可. 【解答】解:令y=0,则−33x+2=0, 解得x=23, 令x=0,则y=2, ∴点A(23,0),B(0,2), ∴OA=23,OB=2, ∴∠BAO=30°, ∴AB=2OB=2×2=4, ∵△AOB绕点A顺时针旋转60°后得到△AO′B′, ∴∠BAB′=60°, ∴∠OAB′=30°+60°=90°, ∴AB′⊥x轴, ∴点B′(23,4). 故答案为:(23,4). 14.(3分)(2022•瑞昌市一模)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为 (2,1) . 【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案. 【解答】解:∵点P(1,1),N(2,0), ∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1), ∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分, ∴对称中心的坐标为(2,1), 故答案为:(2,1). 15.(3分)(2022秋•台州期中)如图,在△ABC中,∠C=90°,AC=BC=4cm,若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在B'处,则BB'为 45cm . 【分析】根据旋转的性质,即可得OB=OB′,即BB′=2OB,又由在等腰△ABC中,∠C=90°,BC=4cm,O是AC的中点,利用勾股定理即可求得OB的长,继而求得答案. 【解答】解:根据旋转的性质,可得:OB=OB′, ∵在等腰△ABC中,∠C=90°,BC=4cm, ∴AC=BC=4cm, ∵O是AC的中点, ∴OC=12AC=2cm, ∴在Rt△BOC中,OB=BC2+OC2=25(cm), ∴BB′=2OB=45cm. 故答案为:45cm. 16.(3分)(2022•咸宁一模)在平面直角坐标系中,直角△AOB如图放置,点A的坐标为(1,0),∠AOB=60°,每一次将△AOB绕点O逆时针旋转90°,第一次旋转后得到△A1OB1,第二次旋转后得到△A2OB2,依次类推,则点B2022的坐标为  (﹣1,−3) . 【分析】探究规律,利用规律解决问题即可. 【解答】解:由题意B(1,3), 第一次旋转后B1(−3,1), 第二次旋转后B2(﹣1,−3), 第三次旋转后B3(3,﹣1), 第四次旋转后B4(1,3), 发现四次一个循环, ∵2022÷4=505•••2, ∴点B2022的坐标为(﹣1,−3), 故答案为:(﹣1,−3). 三.解答题(共7小题,满分52分) 17.(6分)(2022春•昌图县期末)如图所示,将△ABC置于平面直角坐标系中,A(﹣1,4),B(﹣3,2),C(﹣2,1) (1)画出△ABC向下平移5个单位得到的△A1B1C1.并写出点A1的坐标; (2)画出△ABC绕点O顺时针旋转90°得到的△A2B2C2,并写出点A2的坐标; (3)画出以点O为对称中心,与△ABC成中心对称的△A3B3C3,并写出点A3的坐标; 【分析】(1)利用点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可; (2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点即可得到△A2B2C2,从而得到点A2的坐标; (3)根据关于原点对称的点的坐标特征写出点A3、B3、C3的坐标,然后描点即可. 【解答】解:(1)如图,△A1B1C1为所作,点A1的坐标为(﹣1,﹣1); (2)如图,△A2B2C2为所作,点A2的坐标为(4,1); (3)如图,△A3B3C3为所作,点A3的坐标为(1,﹣4). 18.(6分)(2022春•梁平区期末)在网格中画对称图形. 图1是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼成一个图形,使得所拼成的图形满足下列条件,并分别画在图2、图3、图4中(只需各画一个,内部涂上阴影); ①是轴对称图形,但不是中心对称图形; ②是中心对称图形,但不是轴对称图形; ③既是轴对称图形,又是中心对称图形. 【分析】利用轴对称图形和中心对称图形的定义按要求画出图形. 【解答】解:①如图2; ②如图3; ③如图4. 19.(8分)(2022•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D. (1)求证:BE=CF; (2)当四边形ACDE为菱形时,求BD的长. 【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD; (2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=2AC=2,于是利用BD=BE﹣DE求解. 【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的, ∴AE=AB,AF=AC,∠EAF=∠BAC, ∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC, ∵AB=AC, ∴AE=AF, ∴△AEB可由△AFC绕点A按顺时针方向旋转得到, ∴BE=CF; (2)解:∵四边形ACDE为菱形,AB=AC=1, ∴DE=AE=AC=AB=1,AC∥DE, ∴∠AEB=∠ABE,∠ABE=∠BAC=45°, ∴∠AEB=∠ABE=45°, ∴△ABE为等腰直角三角形, ∴BE=2AC=2, ∴BD=BE﹣DE=2−1. 20.(8分)(2022秋•息县期末)如图①,在△ABC与△ADE中,AB=AC,AD=AE. (1)BD与CE的数量关系是:BD = CE. (2)把图①中的△ABC绕点A旋转一定的角度,得到如图②所示的图形. ①求证:BD=CE. ②若延长DB交EC于点F,则∠DFE与∠DAE的数量关系是什么?并说明理由. (3)若AD=8,AB=5,把图①中的△ABC绕点A顺时针旋转α(0°<α≤360°),直接写出BD长度的取值范围. 【分析】(1)利用线段的差直接得出结论; (2)①利用旋转得出∠DAE=∠BAC,进而得出∠DAB=∠EAC,判断出△DAB≌△EAC,即可得出结论; ②由△DAB≌△EAC,得出∠ADB=∠AEC,最后用三角形的内角和定理,即可得出结论; (3)判断出点B在线段AD上时,BD最小,点B在DA的延长线上时,BD最大,即可得出结论. 【解答】解:(1)=, 理由:∵AB=AC,AD=AE, ∴AD﹣AB=AE﹣AC, ∴BD=CE, 故答案为:=; (2)①证明:由旋转的性质,得∠DAE=∠BAC. ∴∠DAE+∠BAE=∠BAC+∠BAE, 即∠DAB=∠EAC. ∵AB=AC,AD=AE, ∴△DAB≌△EAC(SAS) ∴BD=CE. ②∠DFE=∠DAE.理由: ∵△DAB≌△EAC, ∴∠ADB=∠AEC. ∵∠AOD=∠EOF, ∴180°﹣∠ADB﹣∠AOD=180°﹣∠AEC﹣∠EOF, ∴∠DFE=∠DAE. (3)当点B在线段AD上时,BD最小=AD﹣AB=3, 当点B在DA的延长线上时,BD最大=AD+AB=13, ∴3≤BD≤13. 21.(8分)(2022•日照)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证: (1)EA是∠QED的平分线; (2)EF2=BE2+DF2. 【分析】(1)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而得出∠AEQ=∠AEF,即可得出答案; (2)利用(1)中所求,再结合勾股定理得出答案. 【解答】证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ, ∴QB=DF,AQ=AF,∠BAQ=∠DAF, ∵∠EAF=45°, ∴∠DAF+∠BAE=45°, ∴∠QAE=45°, ∴∠QAE=∠FAE, 在△AQE和△AFE中 AQ=AF∠QAE=∠FAEAE=AE, ∴△AQE≌△AFE(SAS), ∴∠AEQ=∠AEF, ∴EA是∠QED的平分线; (2)由(1)得△AQE≌△AFE, ∴QE=EF, 由旋转的性质,得∠ABQ=∠ADF, ∠ADF+∠ABD=90°, 则∠QBE=∠ABQ+∠ABD=90°, 在Rt△QBE中, QB2+BE2=QE2, 又∵QB=DF, ∴EF2=BE2+DF2. 22.(8分)(2022•焦作二模)已知∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB. (1)问题发现 如图(1),过点C作CE⊥CB,与MN交于点E,则易发现BD和EA之间的数量关系为 BD=AE ,BD、AB、CB之间的数量关系为 BD+AB=2CB . (2)拓展探究 当MN绕点A旋转到如图(2)位置时,BD、AB、CB之间满足怎样的数量关系?请写出你的猜想,并给予证明. (3)解决问题 当MN绕点A旋转到如图(3)位置时(点C、D在直线MN两侧),若此时∠BCD=30°,BD=2时,CB= 6−2 . 【分析】(1)过点C作CE⊥CB,得到∠BCD=∠ACE,判断出△ACE≌△DCB,确定△ECB为等腰直角三角形即可. (2)过点C作CE⊥CB于点C,判断出△ACE≌△DCB,确定△ECB为等腰直角三角形,即可得出结论; (3)先判断出△ACE≌△BCD,CE=BC,得到△BCE为等腰直角三角形,得到BD=2BH=2,求出BH,再用勾股定理即可. 【解答】解:(1)如图1,过点C作⊥CB交MN于点E, ∵∠ACD=90°, ∴∠ACE=90°﹣∠ACB,∠BCD=90°﹣∠ACB, ∴∠ACE=∠BCD, ∵DB⊥MN, ∴在四边形ACDB中,∠BAC+∠ACD+∠ABD+∠D=360°, ∴∠BAC+∠D=180°, ∵∠CAE+∠BAC=180°, ∠CAE=∠D, ∵AC=DC, ∴△ACE≌△DCB, ∴AE=DB,CE=CB, ∵∠ECB=90°, ∴△ECB是等腰直角三角形, ∴BE=2CB, ∴BE=AE+AB=DB+AB, ∴BD+AB=2CB; 故答案为:BD=AE,BD+AB=2CB; (2)如图2,过点C作⊥CB交MN于点E, ∵∠ACD=90°, ∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB, ∴∠ACE=∠BCD, ∵DB⊥MN, ∴∠CAE=90°﹣∠AFB,∠D=90°﹣∠CFD, ∵∠AFB=∠CFD, ∴∠CAE=∠D, ∵AC=DC, ∴△ACE≌△DCB, ∴AE=DB,CE=CB, ∵∠ECB=90°, ∴△ECB是等腰直角三角形, ∴BE=2CB, ∴BE=AE﹣AB=DB﹣AB, ∴BD﹣AB=2CB; (3)如图3,过点C作⊥CB交MN于点E, ∵∠ACD=90°, ∴∠ACE=90°﹣∠DCE, ∠BCD=90°﹣∠DCE, ∴∠ACE=∠BCD, ∵DB⊥MN, ∴∠CAE=90°﹣∠AFC,∠D=90°﹣∠CFD, ∵∠AFC=∠BFD, ∴∠CAE=∠D, ∵AC=DC, ∴△ACE≌△DCB, ∴AE=DB,CE=CB, ∵∠ECB=90°, ∴△ECB是等腰直角三角形, ∴BE=2CB, ∴BE=AB﹣AE=AB﹣DB, ∴AB﹣DB=2CB; ∵△BCE为等腰直角三角形, ∴∠BEC=∠CBE=45°, ∵∠ABD=90°, ∴∠DBH=45° 过点D作DH⊥BC, ∴△DHB是等腰直角三角形, ∴BD=2BH=2, ∴BH=DH=2, 在Rt△CDH中,∠BCD=30°,DH=2, ∴CH=3DH=3×2=6, ∴BC=CH﹣BH=6−2; 故答案为:6−2. 23.(8分)(2022•沈阳)思维启迪: (1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是  200 米. 思维探索: (2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE. ①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是  PC=PE,PC⊥PE. ; ②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论; ③当α=150°时,若BC=3,DE=1,请直接写出PC2的值. 【分析】(1)由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB=CD,即可解题. (2)①延长EP交BC于F,易证△FBP≌△EDP(SAS)可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE. ②作BF∥DE,交EP延长线于点F,连接CE、CF,易证△FBP≌△EDP(SAS),结合已知得BF=DE=AE,再证明△FBC≌△EAC(SAS),可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE. ③作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA延长线于H点,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为3

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开