温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
期末考试模拟试卷1解析版-2020-2021学年八年级数学下册精讲精练人教版
期末考试
模拟
试卷
解析
2020
2021
学年
八年
级数
下册
精练
人教版
期末考试模拟试卷(1)
(满分100分,考试时间120分钟)
一、单项选择题(本题8个小题,每题3分,共24分)
1.当1<a<2时,代数式+|1﹣a|的值是( )
A. ﹣1 B. 1 C. 2a﹣3 D. 3﹣2a
【答案】B
【解析】首先判断出a﹣2<0,1﹣a<0,进而利用绝对值以及二次根式的性质化简求出即可.
∵当1<a<2时,∴a﹣2<0,1﹣a<0,
∴+|1﹣a|=2﹣a+a﹣1=1.
2.(2019•山东聊城)下列各式不成立的是( )
A.﹣= B.=2
C.=+=5 D.=﹣
【答案】C.
【解析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.
﹣=3﹣=,A选项成立,不符合题意;
==2,B选项成立,不符合题意;
==,C选项不成立,符合题意;
==﹣,D选项成立,不符合题意。
3.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为( )
A.72 B.24 C.48 D.96
【答案】C
【解析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.
∵四边形ABCD是菱形,
∴OA=OC,OB=OD,AC⊥BD,
∵DH⊥AB,
∴∠BHD=90°,∴BD=2OH,
∵OH=4,∴BD=8,
∵OA=6,∴AC=12,
∴菱形ABCD的面积=12AC⋅BD=12×12×8=48.
4.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为( )
A.101313 B.91313 C.81313 D.71313
【答案】D
【解析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.
由勾股定理得:AC=22+32=13,
∵S△ABC=3×3−12×1×2−12×1×3−12×2×3=3.5,
∴12AC⋅BD=72,
∴13⋅BD=7,
∴BD=71313
5.(2020•黑龙江)一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则该组数据的平均数是( )
A.3.6 B.3.8或3.2 C.3.6或3.4 D.3.6或3.2
【答案】C
【解析】先根据从小到大排列的这组数据且x为正整数、有唯一众数4得出x的值,再利用算术平均数的定义求解可得.
∵从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,
∴x=2或x=1,
当x=2时,这组数据的平均数为2+3+4+4+55=3.6;
当x=1时,这组数据的平均数为1+3+4+4+55=3.4;
即这组数据的平均数为3.4或3.6
6.(2019广西桂林)如图,四边形的顶点坐标分别为,,,,当过点的直线将四边形分成面积相等的两部分时,直线所表示的函数表达式为
A. B. C. D.
【答案】D
【解析】由,,,,
,,
四边形分成面积,
可求的直线解析式为,
设过的直线为,
将点代入解析式得,
直线与该直线的交点为,,
直线与轴的交点为,,
,
或,
,
直线解析式为
7.(2020•上海)小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行( )
A.150 B.250 C.350 D.450
【答案】C
【分析】当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入求得s=70t+400,求出t=15时s的值,从而得出答案.
【解析】当8≤t≤20时,设s=kt+b,
将(8,960)、(20,1800)代入,得:
8k+b=96020k+b=1800,
解得:k=70b=400,
∴s=70t+400;
当t=15时,s=1450,
1800﹣1450=350,
∴当小明从家出发去学校步行15分钟时,到学校还需步行350米。
8.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为( )
A.40° B.50° C.60° D.70°
【答案】D
【分析】根据等腰三角形的性质可求∠C,再根据平行四边形的性质可求∠E.
【解析】∵在△ABC中,∠A=40°,AB=AC,
∴∠C=(180°﹣40°)÷2=70°,
∵四边形BCDE是平行四边形,
∴∠E=70°.
二、填空题(本题9个小题,每空3分,共27分)
9.(2020•哈尔滨)计算24+616的结果是 .
【答案】36.
【解析】原式=26+6=36.
【点拨】根据二次根式的性质化简二次根式后,再合并同类二次根式即可.
10.若=3﹣x,则x的取值范围是 .
【答案】x≤3.
【解析】本题考查了二次根式的性质的应用,注意:当a≥0时,=a,
当a<0时,=﹣a.
根据二次根式的性质得出3﹣x≥0,求出即可.
∵=3﹣x,
∴3﹣x≥0,
解得:x≤3,
11.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.
【答案】3.6或4.32或4.8
【解析】
【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=6,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.
【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,
∴AB==5,S△ABC=AB•BC=6.
沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:
①当AB=AP=3时,如图1所示,
S等腰△ABP=•S△ABC=×6=3.6;
②当AB=BP=3,且P在AC上时,如图2所示,
作△ABC的高BD,则BD=,
∴AD=DP==1.8,
∴AP=2AD=3.6,
∴S等腰△ABP=•S△ABC=×6=4.32;
③当CB=CP=4时,如图3所示,
S等腰△BCP=•S△ABC=×6=4.8;
综上所述:等腰三角形的面积可能为3.6或4.32或4.8,
故答案为3.6或4.32或4.8.
【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.
12.(2019•四川绵阳)单项式x-|a-1|y与2xy是同类项,则ab=______.
【答案】1
【解析】由题意知-|a-1|=≥0,
∴a=1,b=1,则ab=(1)1=1,故答案为:1.
13.实数a,b在数轴上对应点的位置如图所示,化简的结果是 .
【答案】﹣2a+b
【解析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.
由图可知:a<0,a﹣b<0,则
|a|+=﹣a﹣(a﹣b)=﹣2a+b.
14.(2020•湖州)计算:8+|2−1|=_______
【答案】32−1.
【解析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.
原式=22+2−1=32−1.
15.(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为 .
【答案】5
【解析】首先根据题意画出图形,由菱形ABCD中,AC=6,BD=8,即可得AC⊥BD,OA=12AC=3,OB=12BD=4,然后利用勾股定理求得这个菱形的边长.
∵菱形ABCD中,AC=6,BD=8,
∴AC⊥BD,OA=12AC=3,OB=12BD=4,
∴AB=OA2+OB2=5.
即这个菱形的边长为:5.
16.(2020•甘孜州)如图,在▱ABCD中,过点C作CE⊥AB,垂足为E,若∠EAD=40°,则∠BCE的度数为 .
【答案】50°.
【解析】由平行四边形的性质得出∠B=∠EAD=40°,由角的互余关系得出∠BCE=90°﹣∠B=50°即可.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠B=∠EAD=40°,
∵CE⊥AB,
∴∠BCE=90°﹣∠B=50°
17.(2020•长沙)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:
次数
7次及以上
6
5
4
3
2
1次及以下
人数
8
12
31
24
15
6
4
这次调查中的众数和中位数分别是 , .
【答案】5, 5
【解析】根据中位数和众数的概念求解即可.
这次调查中的众数是5,
这次调查中的中位数是5+52=5
三、解答题(本题6个题,18题6分、19题8分、20题8分、21题8分、22题9分、23题10分,共49分)
18.用拆解法化简
【答案】见解析。
【解析】原式
19.已知如图,四边形ABCD中,,,,,,求这个四边形的面积.
解:连接AC,如图所示:
,为直角三角形,
又,,
根据勾股定理得:,
又,,
,,
,
为直角三角形,,
则
20.阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:
设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;
(2)利用所探索的结论,找一组正整数a、b、m、n填空: +2=( +)2;
(3)若a+4=,且a、m、n均为正整数,求a的值?
【答案】(1)m2+3n2,2mn.
(2)4、1.
(3)13
【解析】根据完全平方公式运算法则,即可得出a、b的表达式;首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.
(1)∵a+b=,
∴a+b=m2+3n2+2mn,
∴a=m2+3n2,b=2mn.
(2)设m=1,n=1,
∴a=m2+3n2=4,b=2mn=2.
故答案为4、2、1、1.
(3)由题意,得:
a=m2+3n2,b=2mn
∵4=2mn,且m、n为正整数,
∴m=2,n=1或者m=1,n=2,
∴a=22+3×12=7,或a=12+3×22=13.
21.如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,求□ABCD的周长.
【答案】20
【解析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.
解答:解:∵四边形ABCD为平行四边形,
∴AE∥BC,AD=BC,AD=BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AB=AE,
∴AE+DE=AD=BC=6,
∴AE+2=6,
∴AE=4,
∴AB=CD=4,
∴▱ABCD的周长=4+4+6+6=20
22.小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明.小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.
(1)求函数图象中a的值;
(2)求小强的速度;
(3)求线段AB的函数解析式,并写出自变量的取值范围.
【答案】见解析。
【解析】对于(1),结合图象,全面、仔细分析运动对象和运动过程,(0,300)这个点的含义是:小明出发5分钟时,离学校300米,此时小强出发.由此可知小明离开学校后的速度.点A(10,a)的含义是:小强出发10分钟后,小明离学校a米,此时小明运动的时间为10+5=15分钟,结合以上两个条件,可以求出a的值;对于(2),小强出发12分钟后与小明相遇,此时小明运动了15+2=17分钟,其中最后两分钟是折返后的行程,由此可计算出两人相遇地点与学校之间的距离,再根据小强运动到相遇地点所用的时间,即可计算出小强的速度;对于(3),先确定点B的坐标,再根据待定系数法即可求出线段AB的函数解析式.
【解题过程】(1)a==900
(2)小明的速度为300÷5=60(米/分)
小强的速度为(900-60×2)÷12=65(米/分)
(3)由题意得B(12,780)
设AB所在直线的解析式为y=kx+b(k≠0),
把A(10,900),B(12,780)代入得:,解得,
∴线段AB的解析式为y=-60x+1500,(10≤x≤12)
23.(2020•贵阳)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:
部分初三学生每天听空中黔课时间的人数统计表
时间/h
1.5
2
2.5
3
3.5
4
人数/人
2
6
6
10
m
4
(1)本次共调查的学生人数为 ,在表格中,m= ;
(2)统计的这组数据中,每天听空中黔课时间的中位数是 ,众数是 ;
(3)请就疫情期间如何学习的问题写出一条你的看法.
【答案】见解析。
【分析】(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m的值;
(2)根据中位数、众数的定义分别进行求解即可;
(3)如:认真听课,独立思考(答案不唯一).
【解析】(1)本次共调查的学生人数为:6÷12%=50(人),
m=50×44%=22,
故答案为:50,22;
(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,
∵第25个数和第26个数都是3.5h,
∴中位数是3.5h;
∵3.5h出现了22次,出现的次数最多,
∴众数是3.5h,
故答案为:3.5h,3.5h;
(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).