分享
第二十章检测题.doc
下载文档

ID:2805371

大小:163.50KB

页数:5页

格式:DOC

时间:2024-01-03

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
第二十 检测
第二十章检测题 (时间:120分钟  满分:120分) 一、选择题(每小题3分,共30分) 1.在某校八(2)班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( C ) A.220 B.218 C.216 D.209 2.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表,你认为商家更应该关注鞋子尺码的( C ) 尺码(cm) 22 22.5 23 23.5 24 24.5 25 销售量(双) 4 6 6 10 2 1 1 A.平均数 B.中位数 C.众数 D.方差 3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为s甲2=0.56,s乙2=0.60,s丙2=0.50,s丁2=0.45,则成绩最稳定的是( D ) A.甲 B.乙 C.丙 D.丁 4.(2016·孝感)在2016年体育中考中,某班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数、中位数、方差依次为( A ) 成绩(分) 27 28 30 人数 2 3 1 A.28,28,1 B.28,27.5,1 C.3,2.5,5 D.3,2,5 5.(2017·清远模拟)已知a,b,c,d,e的平均数是x,则a+5,b+12,c+22,d+9,e+2的平均数是( C ) A.x-1 B.x+3 C.x+10 D.x+12 6.去年我市6月1日到10日的每一天最高气温变化如折线图所示,则这10天最高气温的中位数和众数分别是( A ) A.33 ℃,33 ℃ B.33 ℃,32 ℃ C.34 ℃,33 ℃ D.35 ℃,33 ℃ 7.(2016·永州)在“爱我中华”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8 ;乙:7,9,6,9,9,则下列说法中错误的是( C ) A.甲、乙得分的平均数都是8 B.甲得分的众数是8,乙得分的众数是9 C.甲得分的中位数是9,乙得分的中位数是6 D.甲得分的方差比乙得分的方差小 8.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为( B ) A.0 B.1 C.2 D.4 9.下列说法正确的是( C ) A.中位数就是一组数据中最中间的一个数 B.8,9,9,10,10,11这组数据的众数是9 C.如果x1,x2,x3,…,xn的平均数是x,那么(x1-x)+(x2-x)+…+(xn-x)=0 D.一组数据的方差是这组数据的平均数的平方 10.对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是( C ) A.2.25 B.2.5 C.2.95 D.3 ,第10题图)  ,第15题图) 二、填空题(每小题3分,共24分) 11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小王笔试成绩90分,面试成绩85分,那么小王的总成绩是__88__分. 12.已知一组数据0,2,x,4,5的众数是4,那么这组数据中位数是__4__. 13.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是__中位数__.(填“众数”“方差”“中位数”或“平均数”) 14.一组数据3,5,a,4,3的平均数是4,这组数据的方差为__0.8__. 15.小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为s12,s22,根据图中的信息判断两人方差的大小关系为__s12<s22__. 16.甲、乙两人各射击5次,成绩统计表如下: 环数(甲) 6 7 8 9 10 次数 1 1 1 1 1 环数(乙) 6 7 8 9 10 次数 0 2 2 0 1 那么射击成绩比较稳定的是__乙__.(填“甲”或“乙”) 17.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是__21__. 18.一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是__5__. 三、解答题(共66分) 19.(8分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对三种水果7天的销售量进行了统计,统计结果如图所示: (1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是__A__. A.西瓜        B.苹果        C.香蕉 (2)估计一个月(按30天计算)该水果店可销售苹果多少千克? 解:×30=600(千克) 20.(8分)(2016·呼和浩特)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148 (1)计算该样本数据的中位数和平均数; (2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何? 解:(1)中位数为150分钟,平均数为151分钟 (2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好 21.(9分)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,某中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,现从中随机抽取15名学生家庭的收入情况,统计数据如下表: 年收入(万元) 2 2.5 3 4 5 9 13 家庭个数 1 3 5 2 2 1 1 (1)求这15名学生家庭年收入的平均数、中位数、众数; (2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由. 解:(1)平均数为4.3万元,中位数为3万元,众数为3万元 (2)中位数或众数,理由:虽然平均数为4.3万元,但年收入达到4.3万元的家庭只有4个,大部分家庭的年收入未达到这一水平,而中位数或众数3万元是大部分家庭可以达到的水平,因此用中位数或众数较为合适 22.(9分)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如下表: 甲 1 1 0 2 1 3 2 1 1 0 乙 0 2 2 0 3 1 0 1 3 1 (1)分别计算两组数据的平均数和方差; (2)从计算的结果来看,在10天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小? 解:(1)x甲=1.2(个),x乙=1.3(个);s甲2=0.76,s乙2=1.21 (2)由(1)知x甲<x乙,∴甲台机床出次品的平均数较小,由(1)知s甲2<s乙2,∴甲台机床出次品的波动较小 23.(10分)某校在招聘教师时以考评成绩确定人选,甲、乙两位高校毕业生的各项考评成绩如下表: 考评项目 教学设计 课堂教学 答辩 成绩(分) 甲 90 85 90 乙 80 92 83 (1)如果学校将教学设计,课堂教学和答辩按1∶3∶1的比例来计算各人的考评成绩,那么谁会被录用? (2)如果按教学设计占30%,课堂教学占50%,答辩占20%来计算各人的考评成绩,那么又是谁会被录用? 解:(1)x甲=87,x乙=87.8,∵87<87.8,∴乙会被录取 (2)x甲=87.5,x乙=86.6,∵87.5>86.6,∴甲会被录取 24.(10分)某地发生地震后,某校学生会向全校1900名学生发起了“心系灾区”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题: (1)本次接受随机抽样调查的学生人数为__50__,图①中m的值是__32__; (2)求本次调查获取的样本数据的平均数、众数和中位数; (3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数. 解:(2)平均数、众数和中位数,分别为16元、10元、15元 (3)1900×32%=608(人),∴估计该校本次活动捐款金额为10元的学生人数约为608人 25.(12分)为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:    甲、乙射击成绩统计表 平均数 中位数 方差 命中10环的次数 甲 7 7 4 0 乙 7 7.5 5.4 1 (1)请补全上述图表(请直接在表中填空和补全折线图); (2)如果规定成绩较稳定者胜出,你认为谁将胜出?说明你的理由; (3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么? 解:(1) (2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出 (3)如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出,因为甲、乙的平均成绩相同,随着比赛的进行,乙的射击成绩越来越好(回答合理即可)

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开