温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
11.2.2
三角形的外角
练习
11.2
三角形
外角
11.2.2三角形的外角
基础知识
一、 选择题
1.(2013•襄阳)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于( )
A.60° B.70° C.80° D.90°
答案:C
2.(2013•湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
A.15° B.25° C.30° D.10°
答案:A
3.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( )
A.有两个锐角、一个钝角 B.有两个钝角、一个锐角
C.至少有两个钝角 D.三个都可能是锐角
答案:C
4. (2012 江苏省南通市) 如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2等于 ( )
A
C
B
1
2
A.360° B.250° C.180° D.140°
答案:B
5.已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-∠A.
上述说法正确的个数是( )
A.0个 B.1个 C.2个 D.3个
答案:C
6.(2012•漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )
A.45° B.60° C.75° D.90°
答案:C
7.如图,∠BDC=98°,∠C=38°,∠B=23°,∠A的度数是( )
A.61° B.60° C.37° D.39°
答案:C
8.如图,在Rt△ADB中,∠D=90°,C为AD上一点,则x可能是( )
A.10° B.20° C.30° D.40°
答案:B
9.如图,∠A=34°,∠B=45°,∠C=36°,则∠DFE的度数为( )
A.120° B.115° C.110° D.105°
答案:B
10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )
A.180° B.360° C.540° D.720°
答案:B
11.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )
A.∠A=∠1-∠2 B.2∠A=∠1-∠2
C.3∠A=2∠1-∠2 D.3∠A=2(∠1-∠2)
答案:B
12.如图,则∠A+∠B+∠C+∠D+∠E=( )
A.90 B.180 C.200 D.360
答案:B
13.如图,BD、CD分别平分∠ABC和∠ACE,∠A=40°,则∠D的度数是( )
A.20° B.30° C.40° D.60°
答案:A
14.如图,等边三角形ABC,P为BC上一点,且∠1=∠2,则∠3为( )
A.50° B.60° C.75° D.无法确定
答案:B
二、 填空题
2.如图,已知ΔABC中,∠ABC和外角∠ACE的平分线相交于点D,若∠D=400,则∠BAC的度数为 .
1. 如图,BP、CP是任意△ABC中∠B、∠C的角平分线,可知∠BPC=90°+∠A,把图中的△ABC变成图中的四边形ABCD,BP,CP仍然是∠B,∠C的平分线,猜想∠BPC与∠A、∠D的数量关系是 .
答案:∠BPC=(∠BAD+∠ADC).
6.已知:如图,在直角坐标系中,点A,B分别是x轴,y轴上的任意两点,BE是∠ABy的平分线,BE的反向延长线与∠OAB的角平分线交于点C,则∠ACB= .
答案:45°
三、 解答题
4.下面是有关三角形内外角平分线的探究,阅读后按要求作答:
探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+∠A(不要求证明).
探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的数量关系?请说明理由.
探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论: .
解:(1)探究2结论:∠BOC=∠A,
理由如下:
∵BO和CO分别是∠ABC和∠ACD的角平分线,
∴∠1=∠ABC,∠2=∠ACD,
又∵∠ACD是△ABC的一外角,
∴∠ACD=∠A+∠ABC,
∴∠2=(∠A+∠ABC)=∠A+∠1,
∵∠2是△BOC的一外角,
∴∠BOC=∠2-∠1=∠A+∠1-∠1=∠A;
(2)探究3结论∠BOC=90°-∠A.