分享
8年级数学人教版上册同步练习11.1与三角形有关的线段(含答案解析).doc
下载文档

ID:2805203

大小:88.73KB

页数:3页

格式:DOC

时间:2024-01-03

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
年级 学人 上册 同步 练习 11.1 三角形 有关 线段 答案 解析
第十一章 三角形 11.1与三角形有关的线段 专题一 三角形个数的确定 1.如图,图中三角形的个数为(  ) A.2 B.18 C.19 D.20 2.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个. 3.阅读材料,并填表: 在△ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样? 完成下表: △ABC内点的个数 1 2 3 … 1007 构成不重叠的小三角形的个数 3 5 … 专题二 根据三角形的三边不等关系确定未知字母的范围 4.三角形的三边分别为3,1-2a,8,则a的取值范围是(  ) A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-2 5. 在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个. 6.若三角形的三边长分别是2、x、8,且x是不等式>的正整数解,试求第三边x的长. 状元笔记 【知识要点】 1.三角形的三边关系 三角形两边的和大于第三边,两边的差小于第三边. 2.三角形三条重要线段 (1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高. (2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线. (3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线. 3.三角形的稳定性 三角形具有稳定性. 【温馨提示】 1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种. 2.三角形的高、中线、角平分线都是线段,而不是直线或射线. 【方法技巧】 1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边. 2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等. 参考答案: 1.D 解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D. 2.21 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21. 3.解:填表如下: △ABC内点的个数 1 2 3 … 1007 构成不重叠的小三角形的个数 3 5 7 … 2015 解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015. 4.B 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B. 5.10 解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4, ∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个. 6.解:原不等式可化为3(x+2)>-2(1-2x),解得x<8. ∵x是它的正整数解, ∴x可取1,2,3,5,6,7. 再根据三角形三边关系,得6<x<10, ∴x=7.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开