分享
专题05 整式乘除法的三种考法全攻略(解析版)(人教版).docx
下载文档

ID:2805067

大小:675.09KB

页数:13页

格式:DOCX

时间:2024-01-03

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题05 整式乘除法的三种考法全攻略解析版人教版 专题 05 整式 除法 三种考法全 攻略 解析 人教版
专题05 整式乘除法的三种考法全攻略 类型一、不含某项字母求值 例1.已知计算的结果中不含和的项,求m、n的值. 【答案】m=1.5,n=−10. 【详解】解:(5−3x+mx2−6x3)•(−2x2)−x(−3x3+nx−1) =−10x2+6x3−2mx4+12x5+3x4−nx2+x =12x5+(3−2m)x4+6x3+(−10−n)x2+x, 由结果中不含x4和x2项,得到3−2m=0,−10−n=0, 解得:m=1.5,n=−10. 【变式训练1】已知将展开的结果不含和项,(m、n为常数) (1)求m、n的值; (2)在(1)的条件下,求的值.(先化简,再求值) 【答案】(1);(2),-1792 【详解】(1), ,由题意得:,解得:; (2), 当,时,原式 【变式训练2】已知的展开式中不含和项. (1)求的值. (2)先化简,再求值:. 【答案】(1);(2);. 【详解】(1) . 展开式中不含和项,.解得. (2) . 当时,原式. 【变式训练3】(1)试说明代数式的值与、的值取值有无关系; (2)已知多项式与的乘积展开式中不含的一次项,且常数项为,试求的值; (3)已知二次三项式有一个因式是,求另一个因式以及的值. 【答案】(1)代数式的值与s的取值有关系,与t的取值无关系,理由见详解;(2)1;(3)k=20,另一个因式为:. 【详解】解:(1)=s2+2st+s−2st−4t2−2t+4t2+2t=s2+s. 故代数式的值与s的取值有关系,与t的取值无关系; (2)∵()()=2ax3-ax2+2ax-2bx2+bx-2b, 又∵多项式与的乘积展开式中不含的一次项,且常数项为, ∴2a+b=0,-2b=-4,∴a=-1,b=2,=; (3)∵二次三项式有一个因式是, ∴==,∴2m-5=3,5m=k, ∴m=4,k=20,另一个因式为:. 【变式训练4】(1)先化简,再求值:已知,求的值. (2)若中不含,项,求m,n的值. 【答案】(1),22;(2),. 【详解】(1),,, ∴且,解得:,, . (2), ∵展开式中不含x、x2项, ∴,, 解得:,. 类型二、与几何的综合问题 例1.如图,将边长为的正方形剪出两个边长分别为,的正方形(阴影部分).观察图形,解答下列问题: (1)根据题意,用两种不同的方法表示阴影部分的面积,即用两个不同的代数式表示阴影部分的面积. 方法1:______,方法2:________; (2)从中你发现什么结论呢?_________; (3)运用你发现的结论,解决下列问题: ①已知,,求的值; ②已知,求的值. 【答案】(1),;(2);(3)①28;②. 【详解】解:(1)方法1,阴影部分的面积是两个正方形的面积和,即, 方法2,从边长为的大正方形面积减去两个长为,宽为的长方形面积,即, 故答案为:,; (2)在(1)两种方法表示面积相等可得,, 故答案为:; (3)①,,又, ; ②设,,则,, , 答:的值为. 【变式训练1】【知识生成】通过不同的方法表示同一图形的面积,可以探求相应的等式,两个边长分别为,的直角三角形和一个两条直角边都是的直角三角形拼成如如图(1)所示的梯形,请用两种方法计算梯形面积. (1)方法一可表示为______;方法二可表示为______; (2)根据方法一和方法二,你能得出,,之间的数量关系是______(等式的两边需写成最简形式); (3)由上可知,一直角三角形的两条直角边长为6和8,则其斜边长为______; (4)【知识迁移】通过不同的方法表示同一几何体的体积,也可以探求相应的等式.如图(2)是边长为的正方体,被如图所示的分割线分成8块.用不同方法计算这个正方体体积,就可以得到一个等式,这个等式可以为______;(等号两边需化为最简形式) 【答案】(1);(2);(3)10 (4) 【解析】(1)方法一可表示为: 方法二可表示为: 故答案为: (2) , 故答案为: (3) 故答案为:10 (4)方法一可表示为:(a+b)3; 方法二可表示为:a3+3a2b+3ab2+b3. ∴等式为:(a+b)3=a3+3a2b+3ab2+b3. 故答案为:(a+b)3=a3+3a2b+3ab2+b3. 【变式训练2】阅读理解下列材料: “数形结合”是一种非常重要的数学思想.在学习“整式的乘法”时,我们通过构造几何图形,用“等积法”直观地推导出了完全平方和公式:(如图1).所谓“等积法”就是用不同的方法表示同一个图形的面积,从而得到一个等式.如图1,从整体看是一边长为的正方形,其面积为.从局部看由四部分组成,即:一个边长为的正方形,一个边长为的正方形,两个长、宽分别为,的长方形.这四部分的面积和为.因为它们表示的是同一个图形的面积,所以这两个代数式应该相等,即. 同理,图2可以得到一个等式:. 根据以上材料提供的方法,完成下列问题: (1)由图3可得等式:___________; (2)由图4可得等式:____________; (3)若,,,且,,求的值. ①为了解决这个问题,请你利用数形结合思想,仿照前面的方法在下方空白处画出相应的几何图形,通过这个几何图形得到一个含有,,的等式. ②根据你画的图形可得等式:______________; ③利用①的结论,求的值. 【答案】(1)(a+2b)2=a2+4ab+4b2; (2)(2a+b)(a+2b)=2a2++5ab+2b2; (3)①见解析;②(a+b+c)2=a2+b2+c2+2ab+2bc+2ca;③29. 【解析】(1)大正方形的面积可表示为=(a+2b)2, 大正方形的面积=各个长方形的面积之和=a2+4ab+4b2, 所以(a+2b)2=a2+4ab+4b2, 故答案为:(a+2b)2=a2+4ab+4b2; (2)大长方形的面积可表示为=(2a+b)(a+2b), 大长方形的面积=各个长方形的面积之和=2a2++5ab+2b2, 所以(2a+b)(a+2b)=2a2++5ab+2b2, 故答案为:(2a+b)(a+2b)=2a2++5ab+2b2; (3)①所画图形如下: ②正方形的面积可表示为=(a+b+c)2; 正方形的面积=各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca, 所以(a+b+c)2=a2+b2+c2+2ab+2bc+2ca. 故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ca; ③∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ca, ∴a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=92-26×2=81-52=29. 【变式训练3】(发现问题)数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助我们更容易理解数学问题. 例如,求图1阴影部分的面积,可以得到乘法公式(a+b)2=a2+2ab+b2 请解答下列问题: (1)请写出求图2阴影部分的面积能解释的乘法公式(直接写出乘法公式即可) (2)用4个全等的、长和宽分别为a、b的长方形,拼摆成如图3的正方形,请你观察求图3中阴影部分的面积,蕴含的相等关系,写出三个代数式:(a+b)2、(a-b)2、ab之间的等量关系式(直接写出等量关系式即可) (自主探索) (3)小明用图4中x张边长为a的正方形,y张边长为b的正方形,z张宽为a,长为b的长方形纸片拼出一个面积为(3a+2b)(2a+3b)长方形,请在下面方框中画出图形,并计算x+z=_____ (拓展迁移) (4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图5表示的是一个边长为a+b的正方体,请你根据图5求正方体的体积,写出一个代数恒等式:______ 【答案】(1)(a-b)2=a2-2ab+b2;(2)(a+b)2-4ab=(a-b)2; (3)图见解析,19;(4)(a+b)3=a3+3a2b+3ab2+b3 【详解】(1)阴影部分面积=大正方形面积-非阴影区域面积 即,故答案为; (2)阴影部分面积=,大正方形面积=,长方形面积= 大正方形面积-4*长方形面积=阴影部分面积,即:; (3)将面积为的长方形画出后,按比例分割,图如下: 看图即可得:,,所以,,故答案为19; (4)大正方体体积=各小长方体体积之和,即: 故答案为. 【变式训练4】提出问题:怎么运用矩形面积表示(y+2)(y+3)与2y+5的大小关系(其中y>0)? 几何建模: (1)画长y+3,宽y+2的矩形,按图方式分割 (2)变形:2y+5=(y+2)+(y+3) (3)分析:图中大矩形的面积可以表示为(y+2)(y+3);阴影部分面积可以表示为(y+3)×1,画点部分的面积可表示为y+2,由图形的部分与整体的关系可知: (y+2)(y+3)>(y+2)+(y+3),即(y+2)(y+3)>2y+5 归纳提炼: 当a>2,b>2时,表示ab与a+b的大小关系.根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用铅笔画图,并标注相关线段的长) 【答案】ab>a+b.见解析 【详解】解:(1)画长为2+m,宽为2+n的矩形,并按图方式分割. (2)变形:a+b=(2+m)+(2+n) (3)分析:图中大矩形面积可表示为(2+m)(2+n);阴影部分面积可表示为2+m与2+n的和.由图形的部分与整体的关系可知,(2+m)(2+n)>(2+m)+(2+n),即ab>a+b. 类型三、规律性问题 例1.(1)填空: ; ; . (2)猜想: .(其中n为正整数,且). (3)利用(2)猜想的结论计算: ① ② 【答案】(1),,;(2);(3)①;② 【详解】(1); ; ; 故答案分别为:,,; (2)由(1)的规律可得:原式, 故答案为:; (3)① ; ②∵ 即 . 【变式训练1】阅读下文,寻找规律: 已知:,观察下列各式: ; ; ; ; … (1)填空: ①_________; ②_________. (2)根据你的猜想,计算: ①_________; ②那么的末尾数字为_________. 【答案】(1)①;②;(2)①;②1 【解析】(1)解:①根据规律可得:; ②原式; (2)解:①∵, 把x=2,n=2020代入, 得:, ②∵的末尾数字是2,的末尾数字是4,的末尾数字是8,的末尾数字是6,的末尾数字是2,…, ∵, ∴的末尾数字是2, ∴的末尾数字是1. 【变式训练2】我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例. 这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等. (1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为  ; (2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值; (3)若(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,求出a1+a2+a3+……+a2019+a2020的值. 【答案】(1)6;(2)﹣1;(3)﹣1 【详解】解:(1)第五行即为1、 4、 6、 4 、1对应(a+b)4展开式中各项的系数, ∴(a+b)4展开式的各项系数中最大的数为6,故答案为6; (2)∵(a+b)2=a2+2ab+b2, (a+b)3=a3+3a2b+3ab2+b3,...... 根据展式中的2最大指数是5,首项a =2,末项b=-3, ∴25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5=[2+(﹣3)]5=(2﹣3)5=﹣1; (3)∵(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021, ∴当x=1时,(1﹣1)2020=a1×12020+a2×12019+a3×12018+……+a201912+a2020×1+a2021, 即a1+a2+a3+……+a2019+a2020+a2021=0, 当x=0时,(0﹣1)2020=a1×02020+a2×02019+a3×02018+……+a2019×02+a2020×0+a2021,即a2021=1, ∴a1+a2+a3+……+a2019+a2020= a1+a2+a3+……+a2019+a2020+a2021- a2021=0﹣1=﹣1. 【变式训练3】“回文”是汉语特有的一种使用词序回环往复的修辞方法,正着读,倒着读,文字一样,韵味无穷例如:处处飞花飞处处,潺潺碧水碧潺潺.数学中也有像回文联一样的“回文等式”,例如,以下是三个两位数乘两位数的“回文等式”: , , . (1)下列选项中能构成“回文等式”的是______.(填上所有正确的序号) A.与;B.与; C.与;D.与; E.与 (2)请写出两位数乘两位数的“回文等式”的一般规律,并用所学数学知识证明. 【答案】(1)CDE;(2)见解析 【解析】(1)解:A、,,,故该选项不符合题意; B、与不是回文等式,故该选项不符合题意; C、,,所以,故该选项符合题意; D、,故该选项符合题意; E、, ,所以,故该选项符合题意; 所以能构成“回文等式”的是CDE 故答案为:CDE; (2)解:“回文等式”左边(右边)的两个两位数中十位数的积等于个位数的积,理由如下: 设回文等式左边的两个两位数为,,其中a,b,c,d为小于10的正整数, 依题意得:, ,解得:,所以.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开