温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题02
运算方法之因式分解重要方法综合难点专练原卷版人教版
专题
02
运算
方法
因式分解
重要
综合
难点
原卷版
人教版
专题02运算方法之因式分解重要方法综合难点专练(原卷版)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.多项式与多项式的公因式是( )
A. B. C. D.
2.若多项式可因式分解为,其中、、均为整数,则的值是( )
A.1 B.7 C.11 D.13
二、填空题
3.分解因式:a2b-18ab+81b=_____.
4.正实数,满足,则______.
5.把多项式因式分解,结果为________.
三、解答题
6.(1)计算: ;
(2)计算:;
(3)因式分解:.
7.分解因式:
(1)
(2)
(3)
8.从三位数m的各数位上的数字中任选两个构成一个两位数,这样就可以得到六个两位数,我们把这六个两位数叫做数m的“生成数”.数m的“生成数”之和与22的商记为G(m),例如m=123,G(123)==6.
(1)直接写出G(234)= ;并证明:对于任意的三位数n,G(n)为整数;
(2)数p,q是两个三位数,他们都有“生成数”,p=100a+40+b(1≤a≤9,1≤b≤9且a≠b),q=130+c(1≤c≤3),规定:k=,若G(p)•G(q)=56,求k的最大值.
9.先阅读理解下面例题,再按要求解答下列问题:
例:解不等式x2-9<0
解:∵,∴原不等式可化为 ,
由有理数乘法法则:两数相乘,异号得负,得
① ②
解不等式组①得, ,解不等式组②无解
∴原不等式 的解集为
(1)不等式 解集为 ;
(2) 不等式 解集为 ;
(3) 解不等式.
10.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。
过程为:;
这种分解因式的方法叫做分组分解法,利用这种方法解决下列问题:
(1)分解因式:;
(2)三边a,b,c满足,判断的形状.
11.(阅读学习)
课堂上,老师带领同学们学习了“提公因式法、公式法”两种因式分解的方法.分解因式的方法还有许多,如分组分解法.它的定义是:将一个多项式分组后,可提公因式或运用公式继续分解的方法叫分组分解法.使用这种方法的关键在于分组适当,而在分组时,必须有预见性.能预见到下一步能继续分解.例如:
(1);
(2).
(学以致用)
请仿照上面的做法,将下列各式分解因式:
(1);
(2).
(拓展应用)
已知:,.求:的值.
12.第一步:阅读村料,掌握知识.
要把多项式分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得.这时,由于中又有公因式,于是可提公因式,从而得到,因此有
.
这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.
第二步:理解知识,尝试填空:
(1)
第三步:应用知识,因式分解:
(2) x2-(p+q)x+pq;
(3).
第四步:提炼思想,拓展应用
(4)已知三角形的三边长分别是a,b,c,且满足a2+2b2+c2=2b(a+c),试判断这个三角形的形状,并说明理由.
13.阅读下面的材料:
常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:
像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.
利用分组分解法解决下面的问题:
(1)分解因式:;
(2)已知等腰三角形的三边a、b、c均为整数,且,则满足该条件的等腰三角形共有________个,请说明理由.
14.把下列多项式因式分解(要写出必要的过程):
(1)﹣x2y+6xy﹣9y;
(2)9(x+2y)2﹣4(x﹣y)2;
(3)1﹣x2﹣y2+2xy.
15.先阅读下列材料,再解答问题:
常用的分解因式的方法有提取公因式法和公式法,但有的多项式只用上述一种方法无法分解,例如多项式和.经过细心观察可以发现,若将多项式进行合理分组后,先将每一组进行分解,分别分解后再用提公因式法或公式法就可以完整分解了.
解答过程如下:
这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.
利用上述思想方法,把下列各式分解因式:
(1)
(2)
16.阅读材料:若,求x,y的值.
解:∵
∴
∴
∴,
∴
根据上述材料,解答下列问题:
(1),求的值;
(2),,求的值.
17.已知a+b=-2,a-b=2,把(a2+b2-1)2-4a2b2先分解因式,再求值.
18.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和公式法,其实分解因式的方法还有分组分解法、配方法(拆项法)、十字相乘法等等.分组分解法是将一个多项式适当分组后,再用提公因式或运用公式继续分解的方法.
如①和②:
①
②
请你仿照以上方法,探索并解决下列问题:
(1)分解因式:;
(2)两个不相等的实数m,n满足.若,,求和k的值.
19.阅读理解:下面是小明同学分解因式ax+ay+bx+by的方法,首先他将该多项式分为两组得到 (ax+ay)+ (bx+by).然后对各组进行因式分解,得到a (x+y)+ b (x+y),结果发现有公因式(x+y),提出后得到 (x+y) (a+b).
(1)小颖同学学得小明同学方法后,她也尝试对多项式进行因式分解,则她最后提出的公因式是 ;
(2)请同学们也尝试用小明的方法对多项式进行因式分解;
(3)若小强同学将多项式进行因式分解时发现有公因式(x﹣3),求的值.
20.观察“探究性学习”小组的甲、乙两名同学进行的分解因式:
甲:x2+2ax﹣3a2
=x2+2ax+a2﹣a2﹣3a2
=(x+a)2﹣4a2(分成两组)
=(x+a)2﹣(2a)2
=(x+3a)(x﹣a)(平方差公式)
乙:a2﹣b2﹣c2+2bc
=a2﹣(b2+c2﹣2bc)(分成两组)
=a2﹣(b﹣c)2(直接运用公式)
=(a+b﹣c)(a﹣b+c)(再用平方差公式)
请你在他们解法的启发下,把下列各式分解因式:
(1)x2﹣4x+3
(2)x2-2xy-9+y2
(3)x2+2xy+y2-6x-6y+9
21.整式乘法与多项式因式分解是既有联系又有区别的两种变形.
例如,是单项式乘多项式的法则;把这个法则反过来,得到,这是运用提取公因式法把多项式因式分解.
又如、是多项式的乘法公式;把这些公式反过来,得到、,这是运用公式法把多项式因式分解.
有时在进行因式分解时,以上方法不能直接运用,观察甲、乙两名同学的进行的因式分解.
甲:
(分成两组)
(分别提公因式)
乙:
(分成两组)
(运用公式)
请你在他们解法的启发下,完成下面的因式分解
问题一:因式分解:
(1);
(2).
问题二:探究
对、定义一种新运算,规定:(其中,均为非零常数).当时,对任意有理数、都成立,试探究,的数量关系.
22.如图,将一张大长方形纸板按图中虚线裁剪成块,其中有块是边长为的大正方形,块是边长都为的小正方形,块是长为,宽为的相同的小长方形,且.
(1)观察图形,可以发现代数式可以因式分解为 ;
(2)若图中阴影部分的面积为,大长方形纸板的周长为.
①求的值;
②求图中空白部分的面积.
23.阅读下列材料:对于多项式x2+x﹣2,如果我们把x=1代入此多项式,发现x2+x﹣2的值为0,这时可以确定多项式中有因式(x﹣1);同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x﹣2=(x﹣1)(x+2).又如:对于多项式2x2﹣3x﹣2,发现当x=2时,2x2﹣3x﹣2的值为0,则多项式2x2﹣3x﹣2有一个因式(x﹣2),我们可以设2x2﹣3x﹣2=(x﹣2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2﹣3x﹣2=(x﹣2)(2x+1).
请你根据以上材料,解答以下问题:
(1)当x= 时,多项式8x2﹣x﹣7的值为0,所以多项式8x2﹣x﹣7有因式 ,从而因式分解8x2﹣x﹣7= ;
(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式,请你尝试用试根法分解多项式:
①3x2+11x+10;
②x3﹣21x+20
24.用因式分解法解一元二次方程x2﹣5x=6,下列是排乱的解题过程:
①x+1=0或x﹣6=0,②x2﹣5x﹣6=0,③x1=﹣1,x2=6,④(x+1)(x﹣6)=0
(1)解题步骤正确的顺序是 ;
(2)请用因式分解法解方程:(x+3)(x﹣1)=12
25.我们知道部分二次三项式可以用十字相乘法进行因式分解,如:
∴原式
部分二次四项式也可以用十字相乘法进行因式分解,如:
∴原式
用十字相乘法分解下列各式:
(1)
(2)
(3)
26.现有若干张边长为a的正方形A型纸片,边长为b的正方形B型纸片,长宽为a、b的长方形C型纸片,小明用了部分纸片拼出图1,他根据几何图形的面积关系可以得到一个等式:.
(1)小明又拼出图2,请根据图2写出一个等式:_____________.
(2)小明同学接着用x张A型纸片,y张B型纸片,z张C型纸片拼出了一个面积为的大长方形,那么_______.
(3)最后小明同学又选取了2张A型纸片,6张B型纸片,7张C型纸片拼成了一个长方形,则此长方形的周长为_________.(用含a、b的代数式表示)