分享
专题02 全等三角形中的六种模型梳理(原卷版)(人教版).docx
下载文档

ID:2805029

大小:928.81KB

页数:14页

格式:DOCX

时间:2024-01-03

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题02 全等三角形中的六种模型梳理原卷版人教版 专题 02 全等 三角形 中的 模型 梳理 原卷版 人教版
专题02 全等三角形中的六种模型梳理 几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。 类型一、倍长中线模型 中线倍长法:将中点处的线段延长一倍。 目的:①构造出一组全等三角形;②构造出一组平行线。将分散的条件集中到一个三角形中去。 例1.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入. 【探究与发现】 如图1,延长△ABC的边BC到D,使DC=BC,过D作DE∥AB交AC延长线于点E,求证:△ABC≌△EDC. 【理解与应用】 如图2,已知在△ABC中,点E在边BC上且∠CAE=∠B,点E是CD的中点,若AD平分∠BAE. (1)求证:AC=BD; (2)若BD=3,AD=5,AE=x,求x的取值范围. 【变式训练1】如图1,在中,是边的中线,交延长线于点,. (1)求证; (2)如图2,平分交于点,交于点,若,,求的值. 【变式训练2】(1)如图1,已知中,AD是中线,求证:; (2)如图2,在中,D,E是BC的三等分点,求证:; (3)如图3,在中,D,E在边BC上,且.求证:. 【变式训练3】在中,点为边中点,直线绕顶点旋转,直线于点.直线于点,连接,. (1)如图1,若点,在直线的异侧,延长交于点.求证:. (2)若直线绕点旋转到图2的位置时,点,在直线的同侧,其它条件不变,此时,,,求的长度. (3)若过点作直线于点.试探究线段、和的关系. 类型二、截长补短模型 截长补短法使用范围:线段和差的证明(往往需证2次全等) 例.在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系. (1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN. (2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗? 答:   .(请在空格内填“一定成立”“不一定成立”或“一定不成立”). (3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.    【变式训练1】如图,在四边形中,,点E、F分别在直线、上,且. (1)当点E、F分别在边、上时(如图1),请说明的理由. (2)当点E、F分别在边、延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出、、之间的数量关系,并说明理由. 【变式训练2】(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:. 思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题. 方法1:在上截取,连接,得到全等三角形,进而解决问题; 方法2:延长到点,使得,连接,得到全等三角形,进而解决问题. 结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明. (2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由; (3)问题拓展:如图3,在四边形中,,,过点D作,垂足为点E,请直接写出线段、、之间的数量关系. 【变式训练3】在中,BE,CD为的角平分线,BE,CD交于点F. (1)求证:; (2)已知. ①如图1,若,,求CE的长; ②如图2,若,求的大小. 类型三、做平行线证明全等 例1.如图所示:是等边三角形,、分别是及延长线上的一点,且,连接交于点. 求让: 【变式训练1】 P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D. (1)证明:PD=DQ. (2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长. 【变式训练2】已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究: (1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论. (2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由; 类型四、旋转模型 例.如图1,,,,、相交于点,连接. (1)求证:,并用含的式子表示的度数; (2)当时,取,的中点分别为点、,连接,,,如图2,判断的形状,并加以证明. 【变式训练1】四边形是由等边和顶角为的等腰排成,将一个角顶点放在处,将角绕点旋转,该交两边分别交直线、于、,交直线于、两点. (1)当、都在线段上时(如图1),请证明:; (2)当点在边的延长线上时(如图2),请你写出线段,和之间的数量关系,并证明你的结论; (3)在(1)的条件下,若,,请直接写出的长为 . 【变式训练2】(1)问题发现: 如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则: ①∠AEB的度数为   °; ②线段AD、BE之间的数量关系是   . (2)拓展研究: 如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点 A、D、E在同一直线上,若AD=a,AE=b,AB=c,求a、b、c之间的数量关系. (3)探究发现: 图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由. 【变式训练3】如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点. (1)观察猜想:图1中,线段与的数量关系是______,位置关系是______. (2)探究证明:把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由; (3)拓展延伸:把绕点在平面内自由旋转,若,,请直接写出面积的最大值. 类型五、手拉手模型 例.在等边中,点D在AB上,点E在BC上,将线段DE绕点D逆时针旋转60°得到线段DF,连接CF. (1)如图(1),点D是AB的中点,点E与点C重合,连接AF.若,求AF的长; (2)如图(2),点G在AC上且,求证:; (3)如图(3),,,连接AF.过点F作AF的垂线交AC于点P,连接BP、DP.将沿着BP翻折得到,连接QC.当的周长最小时,直接写出的面积. 【变式训练1】△ACB和△DCE是共顶点C的两个大小不一样的等边三角形. (1)问题发现: 如图1,若点A,D,E在同一直线上,连接AE,BE. ①求证:△ACD≌△BCE;②求∠AEB的度数. (2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由. (3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明. 【变式训练2】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD,使AE=AB,AD=AC,∠BAE=∠CAD=90°,连接BD,CE,试猜想BD与CE的大小关系,不需要证明. 【深入探究】(2)如图2,四边形ABCD中,AB=5,BC=2,∠ABC=∠ACD=∠ADC=45°,求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算; 【变式思考】(3)如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD=10,则CD=   . 【变式训练3】(1)问题发现: 如图1,和均为等腰直角三角形,,连接,,点、、在同一条直线上,则的度数为__________,线段、之间的数量关系__________; (2)拓展探究: 如图2,和均为等腰直角三角形,,连接,,点、、不在一条直线上,请判断线段、之间的数量关系和位置关系,并说明理由. (3)解决问题: 如图3,和均为等腰三角形,,则直线和的夹角为__________.(请用含的式子表示) 类型六、一线三角模型 例.在中,,,直线MN经过点C且于D,于E. (1)当直线MN绕点C旋转到图1的位置时,求证: ①≌; ②; (2)当直线MN烧点C旋转到图2的位置时,求证:; (3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明. 【变式训练1】【问题解决】 (1)已知△ABC中,AB=AC,D,A,E三点都在直线l上,且有∠BDA=∠AEC=∠BAC.如图①,当∠BAC=90°时,线段DE,BD,CE的数量关系为:______________; 【类比探究】 (2)如图②,在(1)的条件下,当0°<∠BAC<180°时,线段DE,BD,CE的数量关系是否变化,若不变,请证明:若变化,写出它们的关系式; 【拓展应用】 (3)如图③,AC=BC,∠ACB=90°,点C的坐标为(-2,0),点B的坐标为(1,2),请求出点A的坐标. 【变式训练2】(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE; (2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由. (3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形. 【变式训练3】探究:(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.请直接写出线段BD,DE,CE之间的数量关系是 . 拓展:(2)如图(2),将探究中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问探究中的结论是否成立?如成立,请你给出证明;若不成立,请说明理由. 应用:(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,请直接写出△DEF的形状是 .

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开