温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题04
整式的乘法与因式分解单元综合提优专练解析版人教版
专题
04
整式
乘法
因式分解
单元
综合
提优专练
解析
人教版
专题04整式的乘法与因式分解单元综合提优专练(解析版)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列从左到右的变形中是因式分解的有( )
①x2﹣y2﹣1=(x+y)(x﹣y)﹣1;
②x3+x=x(x2+1);
③(x﹣y)2=x2﹣2xy+y2;
④x2﹣9y2=(x+3y)(x﹣3y).
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
①没把一个多项式转化成几个整式积的形式,故①不是因式分解;
②把一个多项式转化成几个整式积的形式,故②是因式分解;
③整式的乘法,故③不是因式分解;
④把一个多项式转化成几个整式积的形式,故④是因式分解;
故选B
【点睛】
本题考查了因式分解,把一个多项式转化成几个整式积的形式是解题关键.
2.下列等式从左到右的变形是因式分解的是( )
A.2x(x+3)=2x2+6x B.24xy2=3x•8y2
C.x2+2xy+y2+1=(x+y)2+1 D.x2﹣y2=(x+y)(x﹣y)
【答案】D
【分析】
根据因式分解的定义逐个判断即可.
【详解】
A、不是因式分解,故本选项不符合题意;
B、不是因式分解,故本选项不符合题意;
C、不是因式分解,故本选项不符合题意;
D、是因式分解,故本选项符合题意;
故选D.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
3.已知A=﹣4x2,B是多项式,在计算B+A时,小马虎同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为( )
A.﹣8x3+4x2 B.﹣8x3+8x2 C.﹣8x3 D.8x3
【答案】C
【分析】
根据整式的运算法则即可求出答案.
【详解】
由题意可知:-4x2•B=32x5-16x4,
∴B=-8x3+4x2
∴A+B=-8x3+4x2+(-4x2)=-8x3
故选C.
【点睛】
本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
4.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )
A.2mn B.(m+n)2 C.(m-n)2 D.m2-n2
【答案】C
【详解】
解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2.
又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2-4mn=(m-n)2.
故选C.
5.观察下列各式及其展开式:
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
…
请你猜想(a+b)10的展开式第三项的系数是( )
A.36 B.45 C.55 D.66
【答案】B
【分析】
归纳总结得到展开式中第三项系数即可.
【详解】
解:解:(a+b)2=a2+2ab+b2;
(a+b)3=a3+3a2b+3ab2+b3;
(a+b)4=a4+4a3b+6a2b2+4ab3+b4;
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;
(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;
(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;
第8个式子系数分别为:1,8,28,56,70,56,28,8,1;
第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;
第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,
则(a+b)10的展开式第三项的系数为45.
故选B.
【点睛】
本题考查了完全平方公式的规律,根据给的式子得出规律是解题的关键.
6.已知a2+a﹣4=0,那么代数式:a2(a+5)的值是( )
A.4 B.8 C.12 D.16
【答案】D
【分析】
由a2+a﹣4=0,变形得到a2=-(a-4),a2+a=4,先把a2=-(a-4)代入整式得到a2(a+5)=-(a-4)(a+5),利用乘法得到原式=-(a2+a-20),再把a2+a=4代入计算即可.
【详解】
∵a2+a﹣4=0,
∴a2=-(a-4),a2+a=4,
a2(a+5)=-(a-4)(a+5)=-(a2+a-20)=−(4−20)=16,
故选D
【点睛】
此题考查整式的混合运算—化简求值,掌握运算法则是解题关键
7.下列因式分解正确的是( )
A. B.
C. D.
【答案】D
【分析】
利用提公因式法、公式法、十字相乘法等对各选项进行分解因式即可判断正误.
【详解】
A、,故A选项错误;
B、,故B选项错误;
C、不能分解,故C选项错误;
D、,正确,
故选D.
【点睛】
本题考查了因式分解,熟练掌握因式分解的方法以及注意事项是解题的关键.
8.观察下列两个多项式相乘的运算过程:
根据你发现的规律,若(x+a)(x+b)=x2-7x+12,则a,b的值可能分别是( )
A., B.,4 C.3, D.3,4
【答案】A
【分析】
根据题意可得规律为,再逐一判断即可.
【详解】
根据题意得,a,b的值只要满足即可,
A.-3+(-4)=-7,-3×(-4)=12,符合题意;
B.-3+4=1,-3×4=-12,不符合题意;
C.3+(-4)=-1,3×(-4)=-12,不符合题意;
D.3+4=7,3×4=12,不符合题意.
故答案选A.
【点睛】
本题考查了多项式乘多项式,解题的关键是根据题意找出规律.
9.在边长为a的正方形中挖去一个边长为b的小正方形()(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )
A. B.
C. D.
【答案】A
【分析】
分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.
【详解】
甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即,乙图中阴影部分长方形的长为,宽为,阴影部分的面积为,根据两个图形中阴影部分的面积相等可得.
故选:A.
【点睛】
本题考查了平方差公式的验证,灵活表示图形的面积是解题的关键.
10.因式分解,甲看错了a的值,分解的结果是,乙看错了b的值,分解的结果为,那么分解因式正确的结果为( ).
A. B.
C. D.
【答案】B
【分析】
根据甲看错了a的值,将分解的结果展开,能求出正确的b的值,乙看错了b的值,可以求出a的值,再因式分解即可得到答案.
【详解】
解:∵甲看错了a的值
∴b是正确的
∵=
∴b=-6
∵乙看错了b的值
∴a是正确的
∵=
∴a=-1
∴=
故选:B.
【点睛】
本题主要考查了因式分解,熟练因式分解以及计算是解决本题的关键.
二、填空题
11.如图,两个正方形边长分别为a、b,如果a+b=7,ab=13,则阴影部分的面积为_____.
【答案】5
【分析】
由大三角形面积减去小三角形面积表示出阴影部分面积,将a+b与ab的值代入计算即可求出值.
【详解】
解:根据题意得:
当a+b=7,ab=13时,S阴影= a2-b(a-b)=a2-ab+b2=[(a+b)2-2ab]-ab=5,
故答案为5
【点睛】
此题考查了完全平方公式的几何背景,表示出阴影部分面积是解本题的关键.
12.甲、乙两个同学分解因式时,甲看错了b,分解结果为;乙看错了a,分解结果为,则 ______ .
【答案】15
【分析】
由题意分析a,b是相互独立的,互不影响的,在因式分解中,b决定因式的常数项,a决定因式含x的一次项系数;利用多项式相乘的法则展开,再根据对应项系数相等即可求出ab的值.
【详解】
解:分解因式x2+ax+b,甲看错了b,但a是正确的,
他分解结果为(x+2)(x+4)=x2+6x+8,
∴a=6,
同理:乙看错了a,分解结果为(x+1)(x+9)=x2+10x+9,
∴b=9,
因此a+b=15.
故应填15.
【点睛】
此题考查因式分解与多项式相乘是互逆运算,利用对应项系数相等是求解的关键.
13.若x,y满足方程组则的值为______.
【答案】
【分析】
方程组中第二个方程整理后求出x+y的值,原式利用平方差公式变形,将各自的值代入计算即可求出值.
【详解】
解:
由②得,
因为,
所以.
故答案为
【点睛】
此题考查了二元一次方程组的解,以及平方差公式,将原式进行适当的变形是解本题的关键.
14.有两个正方形,现将放在的内部得图甲,将并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形的边长之和为________.
【答案】5
【分析】
设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.
【详解】
解:设正方形A,B的边长分别为a,b.
由图甲得:,
由图乙得:,化简得,
∴,
∵a+b>0,
∴a+b=5,
故答案为:5.
【点睛】
本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型.
15.在我们所学的课本中,多项式与多项式相乘可以用几何图形的面积来表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用图(1)来表示.请你根据此方法写出图(2)中图形的面积所表示的代数恒等式:____________.
【答案】(a+2b)(2a+b)=2a2+5ab+2b2
【详解】
试题分析:图②的面积可以用长为a+a+b,宽为b+a+b的长方形面积求出,也可以由四个正方形与5个小长方形的面积之和求出,表示出即可.
解:根据图形列得:(a+2b)(2a+b)=2a2+5ab+2b2.
故答案为(a+2b)(2a+b)=2a2+5ab+2b2.
考点:多项式乘多项式.
点评:此题考查了多项式乘以多项式法则,熟练掌握法则是解本题的关键.
16.分解因式(2a﹣1)2+8a=__.
【答案】(2a+1)2
【分析】
运用乘法公式展开,合并同类项即可,再根据完全平方公式进行分解因式.
【详解】
原式═4a2+4a+1=(2a)2+4a+1=(2a+1)2,
故答案为:(2a+1)2.
【点睛】
本题考查乘法公式在多项式的化简及因式分解中的运用.解题关键是明确要求,特别是因式分解时,要分解到不能再分解为止.
17.=_______.
【答案】
【分析】
先利用平方差公式把每一个因数化为两个因数的积,约分后可得余下的因数,再计算乘法,从而可得答案.
【详解】
解:
=
=
=
=
故答案为:.
【点睛】
本题考查的是有理数的乘法运算,运用平方差公式对有理数进行简便运算,掌握以上知识是解题的关键.
18.若多项式是完全平方式,则的值是______.
【答案】
【分析】
利用完全平方公式的结构特征判断即可得到结果.
【详解】
∵是完全平方式,
∴,
∴,
故答案为:.
【点睛】
本题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.
三、解答题
19.先化简,再求值:
,其中,.
【答案】ab-1,
【分析】
先算乘法,再合并同类项,算除法,最后代入求出即可.
【详解】
,
当,时,原式.
【点睛】
本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.
20.(1)若3a=5,3b=10,则3a+b的值.
(2)已知a+b=3,a2+b2=5,求ab的值.
【答案】(1)50;(2)2 .
【分析】
(1)逆用同底数幂的乘法进行计算即可得;
(2)由a+b=3,可得a2+2ab+b2=9,再根据a2+b2=5,即可求得ab的值.
【详解】
(1)∵3a=5,3b=10,
∴3a+b=3a×3b=5×10=50;
(2)∵a+b=3,
∴(a+b)2=9,
即a2+2ab+b2=9,
又∵a2+b2=5,
∴ab=2.
【点睛】
本题考查了同底数幂乘法的逆用,完全平方公式,熟练掌握同底幂乘法的运算法则是解(1)的关键,掌握完全平方公式是解(2)的关键.
21.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)按要求填空:
①你认为图②中的阴影部分的正方形的边长等于______;
②请用两种不同的方法表示图②中阴影部分的面积:
方法1:______
方法2:______
③观察图②,请写出代数式(m+n)2,(m-n)2,mn这三个代数式之间的等量关系:______;
(2)根据(1)题中的等量关系,解决如下问题:若|m+n-6|+|mn-4|=0,求(m-n)2的值.
(3)实际上有许多代数恒等式可以用图形的面积来表示,如图③,它表示了______.
【答案】(1)①m﹣n;②(m﹣n)2;(m+n)2﹣4mn,③(m﹣n)2=(m+n)2﹣4mn;(2)(m﹣n)2=20;(3)(2m+n)(m+n)=2m2+3mn+n2
【分析】
(1)①观察可得阴影部分的正方形边长是m-n;
②方法1:阴影部分的面积就等于边长为m-n的小正方形的面积;方法2:边长为m+n的大正方形的面积减去4个长为m,宽为n的长方形面积;
③根据以上相同图形的面积相等可得;
(2)根据|m+n-6|+|mn-4|=0可得m+n=6、mn=4,利用(1)中结论(m-n)2=(m+n)2-4mn计算可得;
(3)根据:大长方形面积等于长乘以宽或两个边长分别为m、n的正方形加上3个长为m、宽为n的小长方形面积和列式可得.
【详解】
(1)①阴影部分的正方形边长是m﹣n.
②方法1:阴影部分的面积就等于边长为m﹣n的小正方形的面积,
即(m﹣n)2,
方法2:边长为m+n的大正方形的面积减去4个长为m,宽为n的长方形面积,即(m+n)2﹣4mn;
③(m﹣n)2=(m+n)2﹣4mn.
(2))∵|m+n﹣6|+|mn﹣4|=0,
∴m+n﹣6=0,mn﹣4=0,
∴m+n=6,mn=4
∵由(1)可得(m﹣n)2=(m+n)2﹣4mn
∴(m﹣n)2=(m+n)2﹣4mn=62﹣4×4=20,
∴(m﹣n)2=20;
(3)根据大长方形面积等于长乘以宽有:(2m+n)(m+n),
或两个边长分别为m、n的正方形加上3个长为m、宽为n的小长方形面积和有:2m2+3mn+n2,
故可得:(2m+n)(m+n)=2m2+3mn+n2.
故答案为(1)m﹣n;(2)①(m﹣n)2,②(m+n)2﹣4mn,③(m﹣n)2=(m+n)2﹣4mn;(3)(2m+n)(m+n)=2m2+3mn+n2.
【点睛】
本题考查了完全平方公式的几何背景,解题的关键是熟练的掌握完全平方公式的相关知识.
22.观察下列算式:
①
②
③
(1)请按照三个算式的规律写出第④个、第⑤个算式;
(2)把这个规律用含有字母的式子表示出来,并说明其正确性.
【答案】(1) 4×6-52=24-25=-1;5×7-62=35-36=-1;(2)n×(n+2)-(n+1)2=-1.
【分析】
(1)按照前3个算式的规律写出即可;
(2)观察发现,算式序号与比序号大2的数的积减去比序号大1的数的平方,等于-1,根据此规律写出即可.
【详解】
(1)①1×3-22=3-4=-1,
②2×4-32=8-9=-1,
③3×5-42=15-16=-1,
④4×6-52=24-25=-1;
⑤5×7-62=35-36=-1;
(2)第n个式子是:n×(n+2)-(n+1)2=-1.
故答案为4×6-52=24-25=-1;5×7-62=35-36=-1;n×(n+2)-(n+1)2=-1.
【点睛】
本题是对数字变化规律的考查,观察出算式中的数字与算式的序号之间的关系是解题的关键.
23.阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.
我们根据对数的定义可得到对数的一个性质:loga(M•N)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:
设logaM=m,logaN=n,则M=am,N=an
∴M•N=am•an=am+n,由对数的定义得m+n=loga(M•N)
又∵m+n=logaM+logaN
∴loga(M•N)=logaM+logaN
解决以下问题:
(1)将指数43=64转化为对数式: .
(2)仿照上面的材料,试证明: =—(a>0,al,M>0,N>0).
(3) 拓展运用:计算log32+log36-log34=____.
【答案】(1)3=log464;;(2)见解析;(3)1
【分析】
(1)根据题意可以把指数式43=64写成对数式;
(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;
(3)根据公式:loga(M•N)=logaM+logaN和loga=logaM-logaN的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.
【详解】
(1)由题意可得,指数式43=64写成对数式为:3=log464,
故答案为3=log464;
(2)设logaM=m,logaN=n,则M=am,N=an,
∴==am-n,由对数的定义得m-n=loga,
又∵m-n=logaM-logaN,
∴loga=logaM-logaN(a>0,a≠1,M>0,N>0);
(3)log32+log36-log34,
=log3(2×6÷4),
=log33,
=1,
故答案为1.
【点睛】
此题考查整式的混合运算,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.
24.阅读:已知a、b、c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.
解:因为a2c2﹣b2c2=a4﹣b4,①
所以c2(a2﹣b2)=(a2﹣b2)(a2+b2).②
所以c2=a2+b2.③
所以△ABC是直角三角形.④
请据上述解题回答下列问题:
(1)上述解题过程,从第 步(该步的序号)开始出现错误,错的原因为 ;
(2)请你将正确的解答过程写下来.
【答案】(1)③,忽略了a2﹣b2=0的可能;(2)见解析
【分析】
(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以a2-b2,没有考虑a2-b2是否为0;
(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.
【详解】
解:(1)上述解题过程,从第③步开始出现错误,错的原因为:忽略了a2﹣b2=0的可能;
(2)正确的写法为:c2(a2﹣b2)=(a2+b2)(a2﹣b2),
移项得:c2(a2﹣b2)﹣(a2+b2)(a2﹣b2)=0,
因式分解得:(a2﹣b2)[c2﹣(a2+b2)]=0,
则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;
所以△ABC是直角三角形或等腰三角形或等腰直角三角形.
故答案为:③,忽略了a2﹣b2=0的可能.
【点睛】
本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
25.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.
【答案】大正方形的面积是36cm2
【分析】
设小正方形的边长为x,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.
【详解】
设小正方形的边长为x,则大正方形的边长为4+(5−x)cm或(x+1+2)cm,
根据题意得:4+(5−x)=(x+1+2),
解得:x=3,
∴4+(5−x)=6,
∴大正方形的面积为36cm2.
答:大正方形的面积为36cm2.
【点睛】
本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.
26.某小区有一块长为()米,宽为()米的长方形地块(如图所示),物业公司计划将中间修建一小型喷泉,然后将周围(阴影部分)进行绿化;
(1)应绿化的面积是多少平方米?
(2)当时求出应绿化的面积.
【答案】(1);(2)63.
【分析】
(1)依据应绿色的面积=矩形面积-正方形面积列式计算即可;
(2)将a=3,b=2代入化简后的结果,最后,依据有理数的运算法则进行计算即可.
【详解】
(1) 依题意得:绿化的面积=
答:绿化的面积为()平方米;
(2) 当时,
平方米.
答:当时应绿化的面积为63平方米.
【点睛】
本题考查了阴影部分面积的表示和多项式的乘法,完全平方公式,准确列出阴影部分面积的表达式是解题的关键.
27.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式 B.平方差公式 C.完全平方公式
(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解的最后结果_________.
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
【答案】(1)C;(2)不彻底,(x-2)4 ;(3) (x-1)4
【分析】
(1)观察多项式结构发现利用了完全平方公式;
(2)观察发现分解不彻底,最后一步括号里还能利用完全平方公式分解;
(3)类比例题中的方法将原式分解即可.
【详解】
解:(1)该同学第二步到第三步运用了因式分解的完全平方公式,
故选:C;
(2)∵x2-4x+4=(x-2)2 ,
∴该同学因