温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
第04章
重点突破训练:与线段和角有关的证明与计算解析版人教版
04
重点
突破
训练
线段
有关
证明
计算
解析
人教版
第04章 重点突破训练:与线段和角有关的证明与计算
考点体系
考点1:与线段有关的计数问题
典例:(2018·内蒙古宁城·初一期末)探究归纳题:
(1)试验分析:
如图1,经过A点与B、C两点分别作直线,可以作____________条;同样,经过B点与A、C两点分别作直线,可以作______________条;经过C点与A、B两点分别作直线,可以作___________条.
通过以上分析和总结,图1共有___________条直线.
(2)拓展延伸:
运用(1)的分析方法,可得:
图2共有_____________条直线;
图3共有_____________条直线;
(3)探索归纳:
如果平面上有n(n≥3)个点,且每3个点均不在同一直线上,经过其中两点共有________条直线.(用含n的式子表示)
(4)解决问题:
中职篮(CBA)2017——2018赛季作出重大改革,比赛队伍数扩充为20支,截止2017年12月21日赛程过半,即每两队之间都赛了一场,请你帮助计算一下一共进行了多少场比赛?
【答案】(1)2 2 2 3 (2)6 10 (3) (4)190
【解析】(1)2;2;2;3;
(2)6;10;
(3)
(4)当n=20时,=(场).
故一共进行了190场比赛.
方法或规律点拨
本题考查了直线射线和线段,要知道从一般到具体的探究方法,并找到规律.
巩固练习
1.(2019·河南许昌·)观察表格:
1条直线
0个交点
平面分成(1+1)块
2条直线
1个交点
平面分成(1+1+2)块
3条直线
(1+2)个交点
平面分成(1+1+2+3)块
4条直线
(1+2+3)个交点
平面分成(1+1+2+3+4)块
根据表格中的规律解答问题:
(1)5条直线两两相交,有 个交点,平面被分成 块;
(2)n条直线两两相交,有 个交点,平面被分成 块;
(3)应用发现的规律解决问题:一张圆饼切10刀(不许重叠),最多可得到 块饼.
【答案】(1)10,16;(2)n(n﹣1);1+n(n+1);(3)56
【解析】解:(1)5条直线两两相交,有10个交点,平面被分成16块;
故答案为:10,16;
(2)2条直线相交有1个交点;
3条直线相交有1+2=3个交点;
4条直线相交有1+2+3=6个交点;
5条直线相交有1+2+3+4=10个交点;
6条直线相交有1+2+3+4+5=15个交点;
…
n条直线相交有1+2+3+4+…+(n﹣1)=n(n﹣1);
平面被分成1+1+2+3+4+…+(n+1)=1+n(n+1);
故答案为:n(n﹣1);1+n(n+1);
(3)当n=10时,(块),
故答案为:56
2.(2019·全国)平面内5条相交直线最多可以有几个交点?条直线呢?
【答案】10个交点;个.
【解析】解:平面内2条直线相交有1个交点,第3条直线和前两条直线都相交,增加了2个交点,得1+2=3个交点,第4条直线和前3条直线都相交,增加了3个交点,得1+2+3=6个交点,第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4=10个交点;
第n条直线和前n−1条直线都相交,增加了n−1个交点,得1+2+3+…n−1,其和为:1+2+3+…n−1=个交点.
3.(2018·浙江全国·初一课时练习)观察图形找出规律,并解答问题.
(1)5条直线相交,最多有_____个交点,平面最多被分成_____块;
(2)n条直线相交,最多有__________个交点,平面最多被分成____________块.
【答案】(1)10,16;(2),[1+]
【解析】如图,
(1)任意画2条直线,它们最多有1个交点;
(2)任意画3条直线,它们最多有3个交点;
(3)任意画4条直线(只画交点个数最多的情况),最多有6个交点;
(4)5条直线最多有10个交点;
n条直线最多有n(n-1)个交点.
一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成7部分,四条直线最多可以把平面分成11部分,可以发现,两条直线时多了2部分,三条直线比原来多了3部分,四条直线时比原来多了4部分,…,n条时比原来多了n部分.
因为n=1,a1=1+1,
n=2,a2=a1+2,
n=3,a3=a2+3,
n=4,a4=a3+4,
…
n=n,an=an-1+n,
以上式子相加整理得,an=1+1+2+3+…+n=1+.
当n=5时,1+=16.
4.(2019·全国初一)往返于A、B两地的客车,途中要停靠C、D两个车站,如图所示. 则需要设定几种不同的票价?需要准备多少种车票?
【答案】设定6种,准备12种车票.
【解析】总线段条数为3+2+1=6,所以需要设定6种不同的票价.因为同一段路,往返时起点和终点正好相反,所以需要准备12种车票.
5.(2019·全国初一课时练习)(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;
(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;
(3)拓展应用:8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?
请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.
【答案】(1)6;(2) ;(3)28
【解析】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,
以点C为左端点向右的线段有线段CD、CB,
以点D为左端点的线段有线段DB,
∴共有3+2+1=6条线段;
(2)
理由:设线段上有m个点,该线段上共有线段x条,
则x=(m−1)+(m−2)+(m−3)+…+3+2+1,
∴倒序排列有x=1+2+3+…+(m−3)+(m−2)+(m−1),
∴2x=m+m+…+m,(m−1)个m,
(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,
直线上8个点所构成的线段条数就等于比赛的场数,
因此一共要进行场比赛.
考点2:线段作图与计算的综合题
典例:(2020·恩施市崔坝镇民族中学初一期末)如图,平面上有射线AP和点B,C,请用尺规按下列要求作图:
(1)连接AB,并在射线AP上截取AD=AB;
(2)连接BC、BD,并延长BC到E,使BE=BD.
(3)在(2)的基础上,取BE中点F,若BD=6,BC=4,求CF的值.
【答案】(1)见解析;(2)见解析;(3)CF的值为1
【解析】解:如图所示,
(1)连接AB,并在射线AP上截取AD=AB;
(2)连接BC、BD,并延长BC到E,使BE=BD.
(3)在(2)的基础上,
∵BE=BD=6,BC=4,
∴CE=BE﹣BC=2
∵F是BE的中点,
∴BF===3
∴CF=BC﹣BF=4﹣3=1.
答:CF的值为1.
方法或规律点拨
本题考查了作图-复杂作图,解决本题的关键是根据语句准确画图.
巩固练习
1.(2020·全国单元测试)如图所示,已知线段的长为.
(1)用直尺和圆规按所给的要求作图:点在线段的延长线上,且;
(2)在上题中,如果在线段上有一点,且线段、长度之比为,求线段的长.
【答案】(1)见解析;(2)3.5cm或1.4xcm
【解析】(1)反向延长BA,以点A为圆心,AB为半径作圆交BA的延长线于点C,则线段AC即为所求;
(2)当在线段上时,
∵,,
∴.∵,
∴.
当在线段上时,
∵,,
∴.∵,
∴.
2.(2020·福建宁化·初一期末)如图,已知线段a和线段AB,
(1)延长线段AB到C,使BC=a(尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,若AB=5,BC=3,点O是线段AC的中点,求线段OB的长.
【答案】(1)见解析;(2) OB长为1.
【解析】解:(1)如图:延长线段AB,在AB的延长线上截取BC=a.
(2)∵AB=5,BC=3,
∴AC=8,
∵点O是线段AC的中点,
∴AO=CO=4,
∴BO=AB﹣AO=5﹣4=1,
∴OB长为1.
3.(2020·河北涞源·初一期末)已知:如图,线段AB.
(1)根据下列语句顺次画图.
① 延长线段AB至C,使BC=3AB,
② 画出线段AC的中点D.
(2)请回答:
① 图中有几条线段;
② 写出图中所有相等的线段.
【答案】(1)画出图形,如图所示见解析;(2)① 6;② .
【解析】解:(1)画出图形,如图所示.
(2)①图中的线段有:AB、BD、DC、AD、BC、AC,共6条;
②相等的线段有:AB=BD,AD=CD.
故答案为:(1)画图见解析;(2)①6;②AB=BD,AD=CD.
4.(2019·广西防城港·初一期末)如图,已知线段a和射线OA,射线OA上有点B.
(1)用圆规和直尺在射线OA上作线段CD,使点B为CD的中点,点C在点B的左边,且BC=a.(不用写作法,保留作图痕迹)
(2)在(1)的基础上,若OB=12cm,OC=5cm,求线段OD的长.
【答案】(1)详见解析;(2)19cm
【解析】解:(1)如图所示:以B为圆心,a的长为半径画弧,交OA于C、D两点
(2)∵OB=12cm,OC = 5cm,
∴ BC= OB -OC =12-5 =7cm,
∵ B为CD的中点,
∴ BC =BD = 7cm,
∴ OD = OB +BD =12+7 = 19cm.
5.(2019·江苏沛县·初一期末)如图,已知四点A、B、C、D.
(1)用圆规和无刻度的直尺按下列要求与步骤画出图形:
①画直线AB.
②画射线DC.
③延长线段DA至点E,使.(保留作图痕迹)
④画一点P,使点P既在直线AB上,又在线段CE上.
(2)在(1)中所画图形中,若cm,cm,点F为线段DE的中点,求AF的长.
【答案】(1)见解析;(2)0.5cm.
【解析】解:(1)如图,该图为所求,
(2)∵AB=2cm,AB=AE,
∴AE=2cm,AD=1cm,
∵点F为DE的中点,
∴EF=DE=cm,
∴AF=AE-EF=2-=cm;
∴AF=0.5cm.
6.(2019·广东龙华·初一期末)如图,已知不在同一条直线上的三点、、,其中,且.
(1)按下列要求作图(用尺规作图,保留作图痕迹)
①作射线;
②在线段上截取;
③在线段上截取.
恭喜您!通过刚才的动手操作画图,你作出了闻名世界的“黄金分割点”.像这样点就称为线段的“黄金分割点”.
(2)阅读下面材料,并完成相关问题;
黄金分割点是指把一条线段分割为两部分,使其中一部分的长约是全长的0.618倍,则称这个点为黄金分割点.如图,为线段上一点,如果,那么点为线段的黄金分割点.
已知某舞台的宽为30米,一次演出时两位主持人分别站在舞台上的两个黄金分割点和处,如图,则这两位主持人之间的距离约为_________米.
【答案】(1)见解析;(2)7.08
【解析】解:(1)如图1,点E就称为线段AB的“黄金分割点”;
(2)∵点Q是MN的黄金分割点,
∴MQ≈0.618MN=18.54,
∴QN=MN﹣MQ=11.46,
∵点P是MN的黄金分割点,
∴NP≈0.618MN=18.54,
∴PQ=NP﹣QN=18.54﹣11.46=7.08(米),
故答案为:7.08.
7.(2019·闽清县教育局初一期末)如图,已知线段a,b,用尺规作图(不用写作法,保留作图痕迹),并填空.
(1)作线段AB,使得AB=a+b;
(2)在直线AB外任取一点C,连接AC,BC,可得AC+BC AB(填“<”或“>”号),理由是 .
【答案】(1)图见解析; (2)>;两点之间线段最短.
【解析】
(1)如图所示:
(2)由题意,得AC+BC>AB
理由是两点之间线段最短.
考点3:动点有关的线段问题
典例:(2020·江西东湖·期末)已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)
(1)若AM=4cm,当点C、D运动了2s,此时AC= ,DM= ;(直接填空)
(2)当点C、D运动了2s,求AC+MD的值.
(3)若点C、D运动时,总有MD=2AC,则AM= (填空)
(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.
【答案】(1)2,4;(2)6 cm;(3)4;(4)或1.
【解析】(1)根据题意知,CM=2cm,BD=4cm,
∵AB=12cm,AM=4cm,
∴BM=8cm,
∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm,
故答案为:2cm,4cm;
(2)当点C、D运动了2 s时,CM=2 cm,BD=4 cm
∵AB=12 cm,CM=2 cm,BD=4 cm
∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;
(3)根据C、D的运动速度知:BD=2MC,
∵MD=2AC,
∴BD+MD=2(MC+AC),即MB=2AM,
∵AM+BM=AB,
∴AM+2AM=AB,
∴AM=AB=4,
故答案为:4;
(4)①当点N在线段AB上时,如图1,
∵AN﹣BN=MN,
又∵AN﹣AM=MN
∴BN=AM=4
∴MN=AB﹣AM﹣BN=12﹣4﹣4=4
∴;
②当点N在线段AB的延长线上时,如图2,
∵AN﹣BN=MN,
又∵AN﹣BN=AB
∴MN=AB=12
∴;
综上所述或1
故答案为或1.
方法或规律点拨
本题考查了线段上的动点问题,线段的和差,较难的是题(4),依据题意,正确分两种情况讨论是解题关键.
巩固练习
1.(2020·浙江镇海·期末)已知数轴上,点为原点,点对应的数为9,点对应的数为,点在点右侧,长度为2个单位的线段在数轴上移动.
(1)当线段在、两点之间移动到某一位置时恰好满足,求此时的值.
(2)当线段在射线上沿方向移动到某一位置时恰好满足,求此时的值.
【答案】(1)b=3.5;(2)或—5
【解析】解:(1)线段AC可以表示为,
根据AC=OB,列式,解得;
(2)当B在O点右侧(或O点)时,,解得 ,
当B在O点左侧时,,解得 ,
∴b的值为或.
2.(2021·重庆开学考试)如图,是线段上任意一点,,两点分别从点开始,同时向点运动,且点的运动速度为,点的运动速度为,运动时间为.
(1)若.
①求运动后,的长;
②当点在线段上运动时,试说明.
(2)如果,试探索的长.
【答案】(1)①3cm;②见解析;(2)9或11
【解析】解:(1)①由题可知:
②
(2)当时,
当点在的右边时,如图所示:
由于
当点在的左边时,如图所示:
综上所述,或11
3.(2020·全国初一课时练习)已知,两点在数轴上表示的数为和,,均为数轴上的点,且.
(1)若,的位置如图所示,试化简:;
(2)如图,若,,求图中以,,,,这5个点为端点的所有线段(无重复)长度的和;
(3)如图,为中点,为中点,且,,若点为数轴上一点,且,试求点所对应的数.
【答案】(1)b-a;(2)41.6;(3)或3.
【解析】(1)由已知得,.
∵,
∴,
∴,,
∴;
(2)∵,
∴,
又∵,
∴
;
(3)∵,
∴.
∵为的中点,为的中点,
∴,,
∴.
又∵,
所以,
解得,
∴.
当点在点的左边时,点在原点的左边,,
故点所对应的数为;
当点在点的右边时,点在原点的右边,,
故点所对应的数为3.
综上,点所对应的数为或3.
4.(2020·河南太康·初一期末)(1)如图,已知点C在线段AB上,AC=6 cm,且BC=4 cm,M,N分别是AC,BC的中点,求线段MN的长度;
(2)在(1)题中,如果AC=a cm,BC=b cm,其他条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律;
(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6 cm,BC=4 cm,点C在直线AB上,M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.
【答案】(1)5 cm;(2)MN=cm.MN的长度为线段AC,BC长度和的二分之一.(3)有变化.当AB在点C同侧时,MN=1 cm.
【解析】解:(1)∵AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,
(2)
直线上相邻两线段中点间的距离为两线段长度和的一半;
(3)如图,有变化,会出现两种情况:
①当点C在线段AB上时,
②当点C在AB或BA的延长线上时,
5.(2020·深圳市高级中学初一期末)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为t.
(1)当t=1时,PD=2AC,请求出AP的长;
(2)当t=2时,PD=2AC,请求出AP的长;
(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;
(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.
【答案】(1)4cm;(2)4cm;(3)4cm;(4)4cm或12cm
【解析】解:(1) 因为点C从P出发以1(cm/s)的速度运动,运动的时间为t=1(s),所以(cm).
因为点D从B出发以2(cm/s)的速度运动,运动的时间为t=1(s),所以(cm).
故BD=2PC.
因为PD=2AC,BD=2PC,所以BD+PD=2(PC+AC),即PB=2AP.
故AB=AP+PB=3AP.
因为AB=12cm,所以(cm).
(2) 因为点C从P出发以1(cm/s)的速度运动,运动的时间为t=2(s),所以(cm).
因为点D从B出发以2(cm/s)的速度运动,运动的时间为t=2(s),所以(cm).
故BD=2PC.
因为PD=2AC,BD=2PC,所以BD+PD=2(PC+AC),即PB=2AP.
故AB=AP+PB=3AP.
因为AB=12cm,所以(cm).
(3) 因为点C从P出发以1(cm/s)的速度运动,运动的时间为t(s),所以(cm).
因为点D从B出发以2(cm/s)的速度运动,运动的时间为t(s),所以(cm).
故BD=2PC.
因为PD=2AC,BD=2PC,所以BD+PD=2(PC+AC),即PB=2AP.
故AB=AP+PB=3AP.
因为AB=12cm,所以(cm).
(4) 本题需要对以下两种情况分别进行讨论.
(i) 点Q在线段AB上(如图①).
因为AQ-BQ=PQ,所以AQ=PQ+BQ.
因为AQ=AP+PQ,所以AP=BQ.
因为,所以.
故.
因为AB=12cm,所以(cm).
(ii) 点Q不在线段AB上,则点Q在线段AB的延长线上(如图②).
因为AQ-BQ=PQ,所以AQ=PQ+BQ.
因为AQ=AP+PQ,所以AP=BQ.
因为,所以.
故.
因为AB=12cm,所以(cm).
综上所述,PQ的长为4cm或12cm.
6.(2020·山东崂山·初一期末)如图,已知线段AB、a、b.
(1)请用尺规按下列要求作图:(不要求写作法,但要保留作图痕迹)
①延长线段AB到C,使BC=a;
②反向延长线段AB到D,使AD=b.
(2)在(1)的条件下,如果AB=8cm,a=6m,b=10cm,且点E为CD的中点,求线段AE的长度.
【答案】(1)①见解析;②见解析;(2)AE=2cm.
【解析】(1)①如图所示,线段BC即为所求,
②如图所示,线段AD即为所求;
(2)∵AB=8cm,a=6m,b=10cm,
∴CD=8+6+10=24cm,
∵点E为CD的中点,
∴DE=DC=12cm,
∴AE=DE﹣AD=12﹣10=2cm.
7.(2019·河北初三二模)如图,已知数轴上有两点,它们的对应数分别是,其中
(1)在左侧作线段,在的右侧作线段(要求尺规作图,不写作法,保留作图痕迹)
(2)若点对应的数是,点对应的数是,且,求的值
(3)在(2)的条件下,设点是的中点,是数轴上一点,且,请直接写出的长
【答案】(1)见解析;(2)c=-68;d=92;(3)28或
【解析】(1)解:如图,线段为所求的线段
(2)因为
;
(3)分情况讨论:
①点N在线段CD上,
由(2)得CD=92−(−68)=160,点B对应的数为12−40=−28,
∴BD=92−(−28)=120,
∵点M是BD的中点,
∴点M对应的数为92−60=32,
∵CN=4DN,
∴DN=CD=32,
∴点N对应的数为92−32=60,
∴MN=60−32=28;
②点N在线段CD的延长线上,
∵CN=4DN,
∴DN=CD=,
∴点N对应的数为92+=,
∴MN=−32=.
故的长为28或.
8.(2019·江西贵溪·初一期末)如图,点是定长线段上一点,、两点分别从点、出发以1厘米/秒,2厘米/秒的速度沿直线向左运动(点在线段上,点在线段上).
(1)若点、运动到任一时刻时,总有,请说明点在线段上的位置;
(2)在(1)的条件下,点是直线上一点,且,求的值;
(3)在(1)的条件下,若点、运动5秒后,恰好有,此时点停止运动,点继续运动(点在线段上),点、分别是、的中点,下列结论:①的值不变;②的值不变.可以说明,只有一个结论是正确的,请你找出正确的结论并求值.
【答案】(1)点P在线段AB的处;(2)或;(3)结论②的值不变正确,.
【解析】解:(1)设运动时间为t秒,则,
由得,即
,,,即
所以点P在线段AB的处;
(2)①如图,当点Q在线段AB上时,
由可知,
②如图,当点Q在线段AB的延长线上时,
,
综合上述,的值为或;
(3)②的值不变.
由点、运动5秒可得,
如图,当点M、N在点P同侧时,
点停止运动时,,
点、分别是、的中点,
当点C停止运动,点D继续运动时,MN的值不变,所以;
如图,当点M、N在点P异侧时,
点停止运动时,,
点、分别是、的中点,
当点C停止运动,点D继续运动时,MN的值不变,所以;
所以②的值不变正确,.
考点4:静态图形中的角度计算与证明
典例:(2020·江西东湖·期末)若的度数是的度数的k倍,则规定是的k倍角.
(1)若∠M=21°17',则∠M的5倍角的度数为 ;
(2)如图1,OB是∠A