分享
专题01 绝对值的三种化简方法(原卷版)(人教版) .docx
下载文档

ID:2804577

大小:201.64KB

页数:6页

格式:DOCX

时间:2024-01-03

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题01 绝对值的三种化简方法原卷版人教版 专题 01 绝对值 三种化简 方法 原卷版 人教版
专题01 绝对值的三种化简方法 绝对值版块的内容在我们这学期比重较大,尤其是绝对值的化简。并且,在压轴题中,常见的题型是利用数轴化简绝对值和利用其几何意义化简绝对值,本专题就这两块难点详细做出分析。 【知识点梳理】 1.绝对值的定义 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a| 2.绝对值的意义 ①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0; ②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。 3.绝对值的化简: 类型一、利用数轴化简绝对值 例1.有理数a、b、c在数轴上位置如图,则的值为(       ). A. B. C.0 D. 例2.有理数,在数轴上对应的位置如图所示,那么代数式的值是(     ) A.-1 B.1 C.3 D.-3 【变式训练1】已知,数、、的大小关系如图所示:化简____. 【变式训练2】有理数a、b、c在数轴上的位置如图. (1)判断正负,用“>”或“<”填空: , , . (2)化简: 【变式训练3】有理数,在数轴上的对应点如图所示: (1)填空:______0;______0;______0;(填“<”、“>”或“=”) (2)化简: 【变式训练4】有理数a、b、c在数轴上的位置如图: (1)用“>”或“<”填空a_____0,b_____0,c﹣b______0,ab_____0. (2)化简:|a|+|b+c|﹣|c﹣a|. 类型二、利用几何意义化简绝对值 例1.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索 (1)求|5-(-2)|=________; (2)同样道理|x+1008|=|x-1005|表示数轴上有理数x所对点到-1008和1005所对的两点距离相等,则x=________; (3)类似的|x+5|+|x-2|表示数轴上有理数x所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x-2|=7,这样的整数是__________. (4)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有,写出最小值;如果没有,说明理由. 【变式训练1】阅读下面的材料: 点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时: ①如图2,点A、B都在原点的右边: ∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣; ②如图3,点A、B都在原点的左边: ∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣; ③如图4,点A、B在原点的两边: ∣AB∣=∣OA∣+∣OB∣=∣a∣+∣b∣=a+(-b)=∣a-b∣, 综上,数轴上A、B两点之间的距离∣AB∣=∣a-b∣.  回答下列问题: (1)数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________; (2)数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2, 那么x为__________. (3)当代数式∣x+1∣+∣x-2∣取最小值时,相应的x的取值范围是__________. 【变式训练2】结合数轴与绝对值的知识回答下列问题: (1)数轴上表示4和1的两点之间的距离是   ;数轴上表示﹣3和2两点之间的距离是   ;一般地,数轴上表示数m和数n的两点之间的距离可以表示为|m﹣n|.那么,数轴上表示数x与5两点之间的距离可以表示为   ,表示数y与﹣1两点之间的距离可以表示为   . (2)如果表示数a和﹣2的两点之间的距离是3,那么a=   ;若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值; (3)当a=   时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是   . 【变式训练3】(问题提出)的最小值是多少? (阅读理解)为了解决这个问题,我们先从最简单的情况入手.的几何意义是这个数在数轴上对应的点到原点的距离,那么可以看作这个数在数轴上对应的点到1的距离;就可以看作这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究的最小值. 我们先看表示的点可能的3种情况,如图所示: (1)如图①,在1的左边,从图中很明显可以看出到1和2的距离之和大于1. (2)如图②,在1,2之间(包括在1,2上),看出到1和2的距离之和等于1. (3)如图③,在2的右边,从图中很明显可以看出到1和2的距离之和大于1.因此,我们可以得出结论:当在1,2之间(包括在1,2上)时,有最小值1. (问题解决) (1)的几何意义是 ,请你结合数轴探究:的最小值是 . (2)请你结合图④探究的最小值是 ,由此可以得出为 . (3)的最小值为 . (4)的最小值为 . (拓展应用)如图,已知使到-1,2的距离之和小于4,请直接写出的取值范围是 . 类型三、分类讨论法化简绝对值 例1.化简:. 【变式训练1】若,则的值为_________. 【变式训练2】(1)数学小组遇到这样一个问题:若a,b均不为零,求的值. 请补充以下解答过程(直接填空) ①当两个字母a,b中有2个正,0个负时,x= ;②当两个字母a,b中有1个正,1个负时,x= ;③当两个字母a,b中有0个正,2个负时,x= ;综上,当a,b均不为零,求x的值为 . (2)请仿照解答过程完成下列问题: ①若a,b,c均不为零,求的值. ②若a,b,c均不为零,且a+b+c=0,直接写出代数式的值.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开