分享
专题02 数轴上的三种动点问题(原卷版)(人教版) .docx
下载文档

ID:2804554

大小:420.27KB

页数:16页

格式:DOCX

时间:2024-01-03

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题02 数轴上的三种动点问题原卷版人教版 专题 02 数轴 三种动点 问题 原卷版 人教版
专题02 数轴上的三种动点问题 数轴的动点问题,无论在平时练习,还是月考,期中期末考试中属于压轴题的版块,其过程复杂,情况多变。那么,本专题对其中常考的三种题型(求时间、求距离或者对应点、定值问题)做出详细分析与梳理。 【知识点梳理】 1.数轴上两点间的距离 数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|; 2.数轴上点移动规律 数轴上点向右移动则数变大(增加),向左移动数变小(减小); 当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b. 类型一、求值(速度、时间、距离) 例1.如图在数轴上A点表示数a,B点表示数b,a,b满足+=0; (1)点A表示的数为 ;点B表示的数为 ; (2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则C点表示的数 ; (3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后 (忽略球的大小,可看作一点) 以原来的速度向相反的方向运动,设运动的时间为t(秒),请分别表示出甲,乙两小球到原点的距离 (用t表示). 【答案】(1)-2;6;(2)或14 (3)甲球与原点的距离为:t+2;当时,乙球到原点的距离为;当时,乙球到原点的距离为 【解析】(1)解:∵|a+2|+|b−6|=0,∴a+2=0,b−6=0,解得,a=−2,b=6, ∴点A表示的数为−2,点B表示的数为6.故答案为:−2;6. (2)设数轴上点C表示的数为c, ∵AC=2BC,∴|c−a|=2|c−b|,即|c+2|=2|c−6|, ∵AC=2BC>BC,∴点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上, ①当C点在线段AB上时,则有−2⩽c⩽6, 得c+2=2(6−c),解得:c=; ②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14, 故当AC=2BC时,c=或c=14;故答案为:或14. (3)∵甲球运动的路程为:1⋅t=t,OA=2,∴甲球与原点的距离为:t+2; 乙球到原点的距离分两种情况: 当0<t⩽3时,乙球从点B处开始向左运动,直到原点O, ∵OB=6,乙球运动的路程为:2⋅t=2t,乙到原点的距离:6−2t(0⩽t⩽3); ②当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6(t>3). 例2.如图,数轴上两个动点A,B起始位置所表示的数分别为,4,A,B两点各自以一定的速度在数轴上运动,已知A点的运动速度为2个单位/秒. (1)若A,B两点同时出发相向而行,正好在原点处相遇,请直接写出B点的运动速度. (2)若A,B两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒时两点相距8个单位长度? (3)若A,B两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,如果在运动过程中,始终有,求C点的运动速度. 【答案】(1)1个单位/秒;(2)4秒和20秒;(3)个单位/秒 【解析】(1)解:B点的运动速度为: =1个单位/秒. (2)∵OA+OB=8+4=12>8,且A点运动速度大于B点的速度, ∴分两种情况, ①当点B在点A的右侧时,运动时间为=4秒. ②当点A在点B的右侧时,运动时间为=20秒, 综合①②得,4秒和20秒时,两点相距都是8个单位长度; (3)设点C的运动速度为x个单位/秒,运动时间为t,根据题意得知 8+(2-x)×t=[4+(x-1)×t]×2,整理,得2-x=2x-2,解得x=, 故C点的运动速度为个单位/秒. 【变式训练1】如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P、Q同时出发,点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问: (1)动点P从点A运动至点C需要多少时间? (2)求P、Q两点相遇时,t的值和相遇点M所对应的数. 【答案】(1)动点P从点A运动至点C需要19秒; (2)P、Q两点相遇时,t的值为秒,相遇点M所对应的数是. 【解析】(1)解:由图可知:动点P从点A运动至C分成三段,分别为AO、OB、BC, AO段时间为=5,OB段时间为=10,BC段时间为=4, ∴动点P从点A运动至C点需要时间为5+10+4=19(秒), 答:动点P从点A运动至点C需要19秒; (2)解:点Q经过8秒后从点B运动到OB段, 而点P经过5秒后从点A运动到OB段,经过3秒后还在OB段,∴P、Q两点在OB段相遇, 设点Q经过8秒后从点B运动到OB段,再经进y秒与点P在OB段相遇, 依题意得:3+y+2y=10,解得:y=,∴P、Q两点相遇时经过的时间为8+=(秒), 此时相遇点M在“折线数轴”上所对应的数是为3+=; 答:P、Q两点相遇时,t的值为秒,相遇点M所对应的数是. 【变式训练2】如图,已知、、是数轴上三点,点表示的数为4,,. (1)点表示的数是______,点表示的数是______. (2)动点、分别从、同时出发,点以每秒2个单位长度的速度沿数轴向右匀速运动,点以每秒1个单位长度的速度沿数轴向左匀速运动,设点的运动时间为()秒. ①用含的代数式表示:点表示的数为______,点表示是数为______; ②当时,点、之间的距离为______; ③当点在上运动时,用含的代数式表示点、之间的距离; ④当点、到点的距离相等时,直接写出的值. 【答案】(1),6;(2)①,;②7;③;④t的值为或10 【解析】(1)解:A点在B点左边,B点表示4,AB=8,∴A点表示的数,4-8=-4; C点在B点右边,BC=2,∴C点表示的数为:4+2=6; (2)解:①P点向右运动,∴P点表示的数为-4+2t; Q点向左运动,∴Q点表示的数为6-t; ②t=1时,P点-2,Q点5,两点距离=5-(-2)=7; ③∵Q点在右,P点在左,∴两点距离=6-t-(-4+2t)=10-3t, ④当P,Q相遇时,两点到C点距离相等,此时2t+t=10,解得:t=, 当P点在C点右边,Q点在C点左边时,-4+2t-6=6-(6-t),解得:t=10, ∴t的值为或10; 【变式训练3】如图,点A、B为数轴上的点(点A在数轴的正半轴),,N为AB的中点,且点N表示的数为2. (1)点A表示的数为______,点B表示的数为______; (2)点M为数轴上一动点,点C是AM的中点,若,求点M表示的数,并画出点M的位置; (3)点P从点N出发,以每秒2个单位长度的速度沿数轴向左匀速运动,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,设运动时间为秒.在运动过程中,点P、Q之间的距离为3时,求运动时间t的值. 【答案】(1)6,﹣2;(2)8或4;(3)1秒或7秒. 【解析】(1)解:∵,N为AB的中点,∴AN=BN=AB=4 ∵点N表示的数为2,点A在点N的右侧,点B在点N的左侧 ∴点A表示的数为2+4=6,点B表示的数为2-4=﹣2,即点A表示的数为6,点B表示的数为﹣2, 故答案为:6,﹣2 (2)解:当点M在点A的右侧时,如图1所示, ∵ C是AM的中点,CM=1,∴AM=2CM=2,∴点M表示的数是6+2=8; 当点M在点A的左侧时,如图2所示, ∵ C是AM的中点,CM=1,∴AM=2CM=2, ∴点M表示的数是6-2=4.故点M表示的数是8或4; (3)解:当点P在点Q的右侧,即点P还没追上点Q时,如图3, 由题意得t+4-2t=3,解得t=1, 当点P在点Q的左侧,即点P追上点Q并超过点Q时,如图4所示, 由题意得2t-t-4=3,解得t=7, ∴点P、Q之间的距离为3时,运动时间t=1秒或7秒. 类型二、定值问题 例1.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题: (1)请直接写出a、b、c的值.a= ,b= ,c= . (2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.    ①t秒钟过后,AC的长度为 (用含t的关系式表示); ②请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值. 【答案】(1)-1,1,5;(2)①4t+6;②不会变化,2 【解析】(1)解:由题意得, 单项式-xy2的系数a=-1,最小的正整数b=1, 多项式2m2n-m3n2-m-2的次数c=5;    故答案为:-1,1,5 (2)①t秒后点A对应的数为a-t,点B对应的数为b+t,点C对应的数为c+3t, 故AC=|c+3t-a+t|=|5+4t+1|=6+4t; 故答案为:6+4t ②∵BC=5+3t-(1+t)=4+2t, AB=1+t-(-1-t)=2+2t; ∴BC-AB=4+2t-2-2t=2, 故BC-AB的值不会随时间t的变化而改变.其值为2. 【变式训练1】如图,已知数轴上点A表示的数为12,B是数轴上一点.且.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒. (1)写出数轴上点B表示的数___,点P表示的数___(用含t的代数式表示); (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,问点P运动多少秒时追上点Q; (3)若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长. 【答案】(1)﹣8,12﹣5t;(2)点P运动10秒时追上点Q; (3)线段MN的长度不发生变化,都等于10;理由见解析. 【解析】(1)解:∵点A表示的数为12,B在A点左边,AB=20, ∴点B表示的数是12-20=-8, ∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为t(t>0)秒, ∴点P表示的数是12-5t.故答案为:-8,12-5t; (2)解:设点P运动x秒追上点Q,Q表示的数是-8-3t, 根据题意得:12-5x=-8-3x,解得:x=10, ∴点P运动10秒时追上点Q; (3)解:线段MN的长度不发生变化,都等于10;理由如下: ∵点A表示的数为12,点P表示的数是12-5t,M为AP的中点, ∴M表示的数是, ∵点B表示的数是-8,点P表示的数是12-5t,N为PB的中点, ∴N表示的数是, ∴MN=(12-t)-(2-t)=10. 【变式训练2】如图,已知数轴上点A表示的数为9,B是数轴负方向上一点,且.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为秒. (1)数轴上点B表示的数为_____,点P表示的数为________;(用含t的代数式表示) (2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,问t为何值时,点P追上点Q?此时P点表示的数是多少? (3)若点M是线段的中点,点N是线段的中点.点P在运动的过程中,线段的长度是否发生变化?若变化,请说明理由;若不变化,请求出的长度; 【答案】(1),;(2)-16;(3)不发生变化, 【解析】(1)解:∵数轴上点A表示的数为8,且AB=14, ∴点B表示的数为−6, 点P表示的数为, 故答案为:,. (2)解:设点P运动t秒时,在点C处追上点Q,如图,则, 因为,所以.解得.      所以点P运动5秒时,在点C处追上点Q. 当时,.此时P点表示的数是. (3)解:不发生变化.理由是: 因为M是线段的中点,N是线段的中点,所以. 分两种情况:①当点P在点A、B两点之间运动时,如图所示, 所以.    ②当点P运动到点B的左侧时,如图所示, 所以.    综上所述,线段的长度不发生变化,其值为. 【变式训练3】点A、B在数轴上对应的数分别为a、b,且a、b满足. (1)如图1,求线段AB的长; (2)若点C在数轴上对应的数为x,且x是方程的根,在数轴上是否存在点P使,若存在,求出点P对应的数,若不存在,说明理由; (3)如图2,点P在B点右侧,PA的中点为M,N为PB靠近于B点的四等分点,当P在B的右侧运动时,有两个结论:①的值不变;②的值不变,其中只有一个结论正确,请判断正确的结论,并直接写出该值. 【答案】(1)4;(2)存在,当点P表示的数为-1.5或3.5时,;理由见解析 (3)结论①正确,=2 【解析】(1)解:∵|a+1|+(b-3)2=0,∴a+1=0,b-3=0,∴a=-1,b=3, ∴AB=|-1-3|=4.答:AB的长为4; (2)解:存在,∵,∴x=-2,∴BC==5. 设点P在数轴上对应的数是m,∵,∴|m+1|+|m-3|=5, 令m+1=0,m-3=0,∴m=-1或m=3. ①当m≤-1时,-m-1+3-m=5,m=-1.5; ②当-1<m≤3时,m+1+3-m=5,(舍去); ③当m>3时,m+1+m-3=5,m=3.5.∴当点P表示的数为-1.5或3.5时,; (3)解:设P点所表示的数为n,∴PA=n+1,PB=n-3. ∵PA的中点为M,∴PM=PA=. ∵N为PB的四等分点且靠近于B点,∴BN=PB=,∴①PM-2BN=-2×=2(不变), ②PM+BN=+×=(随点P的变化而变化), ∴正确的结论为①,且PM-2BN=2. 类型三、点之间的位置关系问题 例1.如图,已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动.设点P的运动时间为t秒. (1)解决问题: ①当时,写出数轴上点B,P所表示的数; ②若点P,Q分别从A,B两点同时出发,问点P运动多少秒与点Q相距3个单位长度? (2)探索问题:若M为AQ的中点,N为BP的中点.当点P在A,B两点之间运动时,探索线段MN与线段PQ的数量关系(写出过程). 【答案】(1)①点B表示-4,点P表示5;②1.8秒或3秒 (2)2MN+PQ=12或2MN-PQ=12,过程见解析 【解析】(1)解:①∵点A表示的数为8,B在A点左边,AB=12,∴点B表示的数是8-12=-4, ∵动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动, ∴点P表示的数是8-3×1=5. ②设点P运动x秒时,与Q相距3个单位长度, 则AP=3x,BQ=2x, ∵AP+BQ=AB-3,∴3x+2x=9,解得:x=1.8, ∵AP+BQ=AB+3,∴3x+2x=15,解得:x=3. ∴点P运动1.8秒或3秒时与点Q相距3个单位长度. (2)2MN+PQ=12或2MN-PQ=12;理由如下: P在Q右侧时有:MN=MQ+NP-PQ=AQ+BP-PQ=(AQ+BP-PQ)-PQ=AB-PQ=(12-PQ), 即2MN+PQ=12. 同理P在Q左侧时有:2MN-PQ=12. 例2.如图,在数轴上A点表示的数为a,B点表示的数为b,C点表示的数为c,b是最大的负整数,且a,c满足|a+3|+(c﹣9)2=0.点P从点B出发以每秒3个单位长度的速度向左运动,到达点A后立刻返回到点C,到达点C后再返回到点A并停止. (1)a=   ,b=   ; (2)点P从点B离开后,在点P第二次到达点B的过程中,经过x秒钟,PA+PB+PC=13,求x的值. (3)点P从点B出发的同时,数轴上的动点M,N分别从点A和点C同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t秒钟时,P、M、N三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t的值. 【答案】(1)﹣3,﹣1;(2)或1或或;(3)1,,,8. 【解析】(1)解:b是最大的负整数,即b=﹣1,|a+3|+(c﹣9)2=0, ∴|a+3|=0,(c﹣9)2=0,∴a=﹣3,c=9,故答案为:﹣3,﹣1; (2)解:AB=2,BC=10,AC=12,PA+PB+PC=13,PA+PC=12,则PB=1, ∴此时P点位置为﹣2或0,根据P的运动轨迹得: 由B到A时:x=1÷3=,由A到B时:x=3÷3=1,由B到C时:x=5÷3=, 由C到B时:x=23÷3=;故x的值为:或1或或. (3)解:当P点由B到A运动时P=﹣3t-1(0≤t<), 当P点由A到C运动时P=﹣3+(3t-2)=3t-5(≤t<), 当P点由C到B运动时P=9-(3t-14)=﹣3t+23(≤t≤8), 当M点由A到C运动时M=4t-3,当N点由C到A运动时N=﹣5t+9, PM相遇时3t+4t=2,t=,MN相遇时4t+5t=12,t=,PN相遇时3t+5t=12+2,t=, 0≤t<,P在中间,则4t-3﹣5t+9=2(﹣3t-1)解得t=﹣舍去; <t<,M在中间,则﹣5t+9﹣3t-1=2(4t-3)解得t=舍去; ≤t<,M在中间,则﹣5t+9+3t-5=2(4t-3)解得t=1; <t<,N在中间,则4t-3+3t-5=2(﹣5t+9)解得t=; <t<,P在中间,则4t-3﹣5t+9=2(3t-5)解得t=; ≤t≤8,P在中间,则4t-3﹣5t+9=2(﹣3t+23)解得t=8;故t的值为:1,,,8. 【变式训练1】如图,已知A、B、C是数轴上三点,点O为原点,点C表示的数为6,BC=4, AB=12. (1)写出数轴上点A、B表示的数; (2)动点P、Q分别从A、C同时出发,沿数轴向右匀速运动.点P的速度是每秒6个单位长度,点Q的速度是每秒3个单位长度,点M为AP的中点,点N在线段CQ上,且CN=CQ,设运动时间为t(t>0)秒. ①求数轴上点M、N表示的数(用含t的式子表示); ②当M、B、N三个点中的其中一个点是另两点构成的线段的中点的时候,求t的值. 【答案】(1)A点表示-10, B表示2, (2)①点M表示的数为:-10+3t,点N表示的数为:6+t,②t的值为:2秒或秒或20秒; 【解析】(1)解:∵O为原点,C表示6,BC=4,∴B表示2,∵AB=12,∴A点表示-10; (2)解:①∵点P从A点以每秒6个单位长度沿数轴向右匀速运动,∴P点表示的数为-10+6t, ∵点M为AP的中点,∴点M表示的数为:(-10-10+6t)=-10+3t, ∵点Q从C点以每秒3个单位长度沿数轴向右匀速运动, ∴Q点表示的数为6+3t, ∵点N为CQ,∴点N表示的数为:6+×(6+3t-6)=6+t, ②当M是B、N中点,B点在左侧时,BM=MN,即-10+3t-2=6+t-(-10+3t),解得:t=, 当B是M、N中点,M点在左侧时,BM=BN,即2-(-10+3t)=6+t-2,解得:t=2, 当N是B、M中点,B点在左侧时,BN=MN,即6+t-2=-10+3t-(6+t),解得:t=20, ∴t的值为:2秒或秒或20秒; 【变式训练2】已知,如图1:数轴上有A、B、C三点,点A表示的数为-5, 点B表示的数为13, 点C表示的数为-2,将一条长为9个单位长度的线段MN放在该数轴上(点M在点N的左边). (1)求线段AB中点表示的数; (2)如图2:若从点M与点A重合开始,将线段MN以0.3个单位长度/秒的速度沿数轴向右移动,经过x秒后,点N恰为线段BC的中点,求x的值; (3)如图3:在(2)的基础上,若线段MN向右移动的同时,动点P从点C开始以0.6个单位长度/秒的速度也沿数轴向右移动,设移动的时间为t秒,当P、N、B三个点中恰有一个点为另两个点所组成线段的中点时,求t的值. 【答案】(1)4;(2)5;(3)或 【解析】(1)解:线段AB中点表示的数为,∴线段AB中点表示的数为4; (2)解:点N表示的数为:-5+9=4 线段BC中点表示的数为: 根据题意,得4+0.3x=5.5,解得:x=5, ∴点N恰为线段BC的中点重合时,x的值为5; (3)解:当点N恰为线段BP的中点时,根据题意,得,方程无解, 当点P恰为线段BN的中点时,根据题意,得,解得:t=, 当点B恰为线段PN的中点时,根据题意,得,解得:t=, 综上,当P、N、B三个点中恰有一个点为另两个点所组成线段的中点时,t的值为或. 【变式训练3】已知A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是的优点. 例如:如图1,A,B为数轴上两点,点A表示的数为-1,点B表示的数为2,表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是的优点;表示数0的点D到点C的距离是1,到点B的距离是2,那么点D是的优点. (1)在图1中,点C是的优点,也是(A,_____________)的优点;点D是的优点,也是(B,_____________)的优点; (2)如图2,A,B为数轴上两点,点A所表示的数为-2,点B所表示的数为4.设数所表示的点是的优点,求的值; (3)如图3,A,B为数轴两点,点A所表的数为-20,点B所表示的数为40.现有一只电子蚂蚁Р从点B出发,以5个单位每秒的速度向左运动,到达点A停止,设点Р的运动时间为t秒,在点Р运动过程中,是否存在P、A和B中恰有一个点为其余两点的优点﹖如果存在请求出t的值;如果不存在,说明理由. 【答案】(1)D,A;(2)10或2;(3)当或或时,P、A和B中恰有一个点为其余两点的优点 【解析】(1)解:A,B为数轴上两点,点A表示的数为-1,点D表示的数为0,表示数1的点C到点A的距离是2,到点D的距离是1,那么点C是的优点;表示数0的点D到点B的距离是2,到点A的距离是1,那么点D是A的优点, 故答案为:D;A; (2)解:由题意得, ∴或, 解得或; (3)解:由题意得运动t秒时点P表示的数为, ∴,,, 当A是(B,P)的优点时, ∴, 解得; 当B为(A,P)的优点时, 解得; 当P为(A、B)的优点时, 解得; 当P为(B,A)的优点时, 解得; 综上所述,当或或时,P、A和B中恰有一个点为其余两点的优点

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开