温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题05
整式的加减
重难点题型11个解析版
专题
05
整式
加减
难点
题型
11
解析
专题05 整式的加减 重难点题型11个
题型1. 代数式的书写规范问题
【解题技巧】代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘号可以省略不写或用“ · ” 表示. 一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.
1.(2022·河南信阳·七年级期末)下列各式书写符合要求的是( )
A. B. C.ab×5 D.
【答案】D
【分析】根据代数式的书写要求判断各项即可.
【详解】解:A、原书写不规范,应写为,故此选项不符合题意;
B,原书写不规范,应写为,故此选项不符合题意;
C、书写不规范,应写为5ab,故本选项不符合题意;
D、书写规范,故此选项符合题意.故选:D.
【点睛】本题考查了代数式,解题的关键是掌握代数式的书写要求:(l)在代数式中出现的乘号,通常简写成“·”或者简略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写,而分数要写成假分数的形式.
2.(2022·湖南永州·七年级期中)下列代数式的书写格式正确的是( )
A. B. C. D.
【答案】C
【分析】根据代数式的书写要求判断各项即可.
【详解】解:A.正确的书写格式是,故选项错误;
B. 正确的书写格式是,故选项错误;
C. 代数式书写正确;
D.正确的书写格式是,故选项错误.
故选:C.
【点睛】本题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.
3.(2022·河南驻马店·七年级期末)下列各式符合代数式书写规范的是( )
A.a8 B. C.m﹣1元 D.1x
【答案】B
【分析】本题根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.
【详解】A、数字应写在前面正确书写形式为8a,故本选项错误;
B、书写形式正确,故本选项正确;
C、正确书写形式为(m﹣1)元,故本选项错误;
D、正确书写形式为x,故本选项错误,
故选:B.
【点睛】本题考查了代数式:用运算符号(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.数的一切运算规律也适用于代数式.单独的一个数或者一个字母也是代数式,注意代数式的书写格式是解答此题的关键.
4.(2022·河北石家庄·七年级期末)下列各式中,符合代数式书写规则的是( )
A. B. C. D.2y÷z
【答案】A
【分析】根据代数式的书写规则逐一进行判断.
【详解】A、符合代数式书写规则.
B、数与字母相乘,乘号一般也省略不写,但数一定要写在字母的前面,不符合代数式书写规则,应该为;
C、数与字母相乘,乘号一般也省略不写,但数一定要写在字母的前面,而且当数是带分数时一定要化为假分数,不符合代数式书写规则,应该为;
D、当代数式中含有除法运算时,一般不用“÷”号,而改用分数线,不符合代数式书写规则,应该为;
故选A.
【点睛】本题考查代数式的书写规则,解决本题的关键是熟练掌握书写规则.
5.(2022·山东潍坊·七年级期末)下列各式符合代数式书写规范的是( )
A. B. C. D.m÷2n
【答案】C
【分析】根据代数式的书写规则,数字与字母之间的乘号应省略,分数不能为带分数,不能出现除号,对各项的代数式进行判定,即可求出答案.
【详解】解:A、正确书写格式为,故此选项不符合题意;
B、正确书写格式为,故此选项不符合题意;
C、是正确的书写格式,故此选项符合题意;
D、正确书写格式为,故此选项不符合题意.故选:C.
【点睛】本题考查了代数式的书写规则,能够根据代数式书写的标准规则对各项进行分析,得出答案是解题的关键.
6.(2022·河北保定·七年级期末)将下列各式按照列代数式的规范要求重新书写:
(1)a×5,应写成_______ ; (2)S÷t应写成_________;
(3),应写成______;(4), 应写成______.
【答案】 5a
【分析】(1)根据代数式书写规范将数字因数写在代数式前省略乘号即可得到结果.
(2)根据代数式书写规范将除法算式写成分数形式即可得到结果.
(3)根据代数式书写规范将数字因数写在代数式前省略乘号,同时将相同字母的乘积写成乘方形式即可得到结果.
(4)根据代数式书写规范将数字因数的带分数化为假分数即可得到结果.
【详解】解:(1)a×5=5a,故答案为∶5a;
(2)S÷t=,故答案为∶;
(3),故答案为∶;
(4) 故答案为∶.
【点睛】本题考查代数式书写规范,熟知代数式的书写规范要求是解题关键.
题型2. 根据要求列代数式
【解题技巧】解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.
1.(2022·山东烟台·期末)阿宜跟同学到西餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为12份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?( )
A.12-x-y B.12-y C.12-x+y D.12-x
【答案】D
【分析】根据点的饮料能确定在B和C餐中点了x份意大利面,根据题意可得点A餐12−x.
【详解】解:x杯饮料则在B和C餐中点了x份意大利面,
∴点A餐为12−x,
故选D.
【点睛】本题考查列代数式;能够根据题意,以意大利面为依据,准确列出代数式是解题的关键.
2.(2022·贵州铜仁·七年级期末)m与n的和的3倍可以表示为__________.
【答案】3(m+n)
【分析】要明确给出文字语言中的运算关系,先表示出m与n的和,再表示出和的3倍即可.
【详解】解:“m与n和的3倍”用代数式可以表示为:3(m+n).
故答案为:3(m+n).
【点睛】此题主要考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”、“平方”等,从而明确其中的运算关系,正确地列出代数式.
3.(2022·江苏连云港·八年级阶段练习)一件商品售价x元,利润率为a%(a>0),则这件商品的成本为_____元.
【答案】
【分析】设成本是y元,则y(1+a%)=x,据此即可求解.
【详解】解:设成本是y元,则y(1+a%)=x,
则y=.
故答案是:.
【点睛】本题考查了列代数式,正确理解增长率的含义是关键.
4.(2022·黑龙江大庆·期中)用代数式表示比a的5倍小3的数是_________.
【答案】##
【分析】根据题意列出代数式即可.
【详解】解:比a的5倍小3的数是.
故答案为:.
【点睛】本题主要考查了列代数式,认真分析题意,理解题意是解题的关键.
5.(2022·河南南阳·七年级期中)“两个数的和与这两个数的差的乘积等于这两个数平方的差”.在学过用字母表示数后,请借助字母,用代数式表示为______.
【答案】
【分析】根据“两个数的和与这两个数的差的乘积等于这两个数平方的差”,即可用含a和b的代数式表示即可.
【详解】解:“两个数的和与这两个数的差的乘积等于这两个数平方的差”,用a和b表示这两个数,用符号语言描述这句话是:(a+b)(a﹣b)=a2﹣b2,
故答案为:(a+b)(a﹣b)=a2﹣b2.
【点睛】本题考查了列代数式,解决本题的关键是根据题意列出代数式.
6.(2022·江苏扬州·八年级期中)如果面积为a公顷、b公顷的两块稻田分别产稻子m千克、n千克,那么这两块稻田平均每公顷产稻子______千克.
【答案】
【分析】先算出两块地的总产量,再除以两块地的公顷数即可.
【详解】解:两块地的总产量:m+n,
这两块地平均每公顷的粮食产量为:,
故答案为:.
【点睛】本题考查了列代数式,是基础知识要熟练掌握.
题型3.整式的相关概念
(1)代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式.
(2)单项式及相关概念:数或字母的积叫单项式。(单独的一个数或一个字母也是单项式)。其中单项式中的数字因数称这个单项式的系数;一个单项式中,所有字母的指数的和叫做这个单项式的次数。
(3)多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.
(4)整式:单项式与多项式统称为整式。
(5)同类项:解题关键是掌握同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
1.(2022·四川广安·七年级期末)下列各式中,,,,1, ,单项式有( )
A.2个 B.3个 C.4个 D.5个
【答案】B
【分析】根据单项式的定义:数字与字母的积叫做单项式,单独一个数或一个字母也叫做单项式,由此判断即可.
【详解】由单项式的定义知,、、1属于单项式.
故选:B.
【点睛】本题考查单项式的概念,熟记概念是关键.
2.(2021·广东省·七年级期中)对于式子:,其中有______个多项式.
【答案】2
【分析】利用多项式的定义分析得出答案.
【详解】解:在中,
多项式为:,故答案为:2.
【点睛】此题主要考查了多项式,正确把握相关定义是解题关键.
3.(2022·贵州铜仁·七年级期末)对于下列四个式子:①0.1;②;③;④其中不是整式的是( )
A.① B.② C.③ D.④
【答案】C
【分析】根据整式的概念对各个式子进行判断即可.
【详解】解:①0.1;②;④都是整式;
③分母中含有字母,不是整式;
故选:C.
【点睛】本题考查的是整式的概念,整式分为单项式和多项式,注意分母不能出现字母.
4.(2021·正安县思源实验学校七年级期中)下列式子①②③④⑤⑥⑦⑧,其中代数式有( )
A.3个 B.4个 C.5个 D.6个
【答案】C
【分析】代数式是运算符号把数和表示数的字母连接而成的式子,据此确定解答即可.
【详解】解:代数式是运算符号把数和表示数的字母连接而成的式子,
所以以上八个式子中,是代数式的有①③⑥⑦⑧五个.故选:C
【点睛】本题考查了代数式的定义,准确理解代数式的定义是解题关键.
5.(2021·山西七年级期末)下列各组中的两个单项式能合并的是( )
A.4和4x B.xy2和﹣yx2 C.2ab和3abc D.和x
【答案】D
【分析】根据整式的加减:合并同类项逐项判断即可得.
【详解】A、4和不是同类项,不可合并,此项不符题意;
B、和不是同类项,不可合并,此项不符题意;
C、和不是同类项,不可合并,此项不符题意;
D、和是同类项,可以合并,此项符合题意;故选:D.
【点睛】本题考查了整式的加减:合并同类项,熟练掌握同类项的定义是解题关键.
6.(2022·全国·七年级专题练习)把下列各代数式填在相应的大括号里.(只需填序号)
①x-7;②;③4ab;④;⑤;⑥y;⑦;⑧;⑨;⑩;⑪;⑫;⑬-1.
单项式集合_______________;
多项式集合_______________;
整式集合_______________
【答案】 ②③⑥⑫⑬ ①⑧⑨⑩ ①②③⑥⑧⑨⑩⑫⑬
【分析】根据单项式、多项式、整式的定义解答即可.
【详解】解:单项式有:②,③,⑥,⑫,⑬;
多项式有:①,⑧,⑨,⑩;
整式有:①;②;③;⑥;⑧;⑨;⑩;⑫;⑬;
故答案为:②③⑥⑫⑬;①⑧⑨⑩;①②③⑥⑧⑨⑩⑫⑬.
【点睛】本题主要考查的是整式,熟练掌握单项式、多项式、整式的定义是解题的关键.
7.(2021·山西临汾市·七年级期末)一个单项式满足下列两个条件:①系数是;②次数是.请写出一个同时满足上述两个条件的单项式________.
【答案】(答案不唯一)
【分析】根据单项式的定义分析,即可得到答案.
【详解】根据题意,可同时满足条件的单项式为:(答案不唯一)
故答案为:(答案不唯一).
【点睛】本题考查了单项式的知识;解题的关键是熟练掌握单项式的性质,从而完成求解.
8.(2022·云南·景谷傣族彝族自治县教育体育局教研室七年级期末)在下列说法中,错误的是( )
A.是二次三项式 B.不是单项式
C.是二次单项式 D.的系数是-1
【答案】C
【分析】根据多项式与单项式的定义,单项式的次数,逐项分析判断即可求解.
【详解】解:A. 是二次三项式,故该选项正确,不符合题意;
B. 不是单项式,故该选项正确,不符合题意;
C. 是三次单项式,故该选项不正确,符合题意;
D. 的系数是-1,故该选项正确,不符合题意;
故选C
【点睛】本题考查了多项式与单项式,掌握定义是解题的关键.单项式中,所有字母的指数和叫单项式的次数,数字因数叫单项式的系数,单项式中所有字母的指数的和叫做它的次数,通常系数不为0, 多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,一个多项式的项数就是合并同类项后用“+”或“-”号之间的多项式个数,次数就是次数和最高的那一项的次数; 一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.
题型4. 利用整式的相关概念求字母的取值
①利用单项式的系数与次数求值
解题技巧:此类题型有2点需要注意:①题干会告知单项式的次数,利用系数关系可以列写一个等式;
②还需注意,单项式的系数不为0
②利用多项式的次数及特定的系数求值
解题技巧:此类题型有3点需要注意:①题干会告知次数,则多项式的最高次数项的次数等于该值;
②注意最高次数项的系数不能为0;③题干还会告知项数,往往利用项数也能确定一些等式(不等式)。
1.(2022·甘肃白银·七年级期末)如果多项式xm-3+5x-3是关于x的三次三项式,那么m的值为( )
A.0 B.3 C.6 D.9
【答案】C
【分析】直接利用多项式的定义得出m-3=3,进而求出即可.
【详解】解:∵整式xm-3+5x-3是关于x的三次三项式,
∴m-3=3,解得:m=6.故选:C.
【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.
2.(2022·全国·七年级课时练习)如果整式是三次三项式,那么等于( ).
A.3 B.4 C.5 D.6
【答案】C
【详解】解:∵多项式是关于x的三次三项式,
∴n-2=3,解得n=5,故C正确.故选:C.
【点睛】本题考查了根据多项式的次数求参数的值,理解三次三项式的含义是解决本题的关键.
3.(2022·江苏·七年级)如果整式是关于的二次三项式,那么等于( )
A.3 B.4 C.5 D.6
【答案】B
【分析】由于该多项式是关于x的二次三项式,可得n-2=2,即可求得n的值.
【详解】解:∵多项式是关于x的二次三项式,
∴n-2=2,
解得n=4,
故选:B.
【点睛】本题考查了根据多项式的次数求参数的值,理解二次三项式的含义是解决本题的关键.
4.(2022·全国·七年级专题练习)已知关于x,y的多项式x2ym+1+xy2﹣2x3﹣5是六次四项式,单项式3x2ny5﹣m的次数与这个多项式的次数相同,则m﹣n=_____.
【答案】1
【分析】根据多项式x2ym+1+xy2﹣2x3﹣5是六次四项式,可得,根据单项式3x2ny5﹣m的次数与这个多项式的次数相同,可得,两式联立即可得到m、n的值,代入计算即可求解.
【详解】∵多项式是六次四项式,
∴,解得,
∵单项式3x2ny5﹣m的次数与这个多项式的次数相同,
∴,即,解得,
∴,
故答案为1.
【点睛】此题考查了单项式与多项式的定义和性质.解题的关键是掌握单项式和多项式的相关定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.
5.(2022·江苏·七年级)若是关于的二次二项式,那么的值为______.
【答案】-3
【分析】由是关于的二次二项式,可得且 再解方程,从而可得答案.
【详解】解: 是关于的二次二项式,
且
解得:
故答案为:
【点睛】本题考查的是多项式的项与次数,掌握“利用多项式的项与次数的概念求解字母系数的值”是解本题的关键.
6.(2022·江苏·七年级)当m为何值时,﹣y2+x2y﹣3是四次多项式.
【答案】
【分析】根据四次多项式的定义可知,该多项式的最高次数为4,所以可确定m的值.
【详解】解:是四次多项式,
,
,
∴当m为16时,是四次多项式.
【点睛】本题考查了与多项式有关的概念,解题的关键理解四次多项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.
题型5. 利用同类项的概念求值
解题技巧:(1)若告知某两个单项式为同类项,则这两个单项式的对应字母的次数相同;(2)若告知某个整式经过一系列变化后,结果为某个单项式,则该整式中与该单项式不是同类项的系数必为0.
1.(2022·山东威海·期末)若与是同类项,则的值为( )
A. B. C. D.
【答案】D
【分析】根据同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项,据此求解即可.
【详解】解:∵与是同类项,
∴,
∴,
∴,
故选:D.
【点睛】本题主要考查了同类项的定义和代数式求值,解题的关键在于能够熟练掌握同类项的定义.
2.(2021·四川广元·七年级期末)若a,b都不为0,且3am+1b3+(n﹣2)a5b3=0,则nm的值是( )
A.1 B.﹣1 C.4 D.﹣4
【答案】A
【分析】根据同类项的定义,所含字母相同,且相同字母的指数也相同的两个单项式是同类项,以及合并同类项分别求得的值,进而代入代数式即可求解.
【详解】解:∵a,b都不为0,且3am+1b3+(n﹣2)a5b3=0,
∴,
解得,
.
故选A.
【点睛】本题考查了同类项的定义,合并同类项,求得的值是解题的关键.
3.(2022·吉林·长春市实验中学七年级期末)若3amb2n与-2bn+1a2是同类项,则m=______,n=_____.
【答案】
【分析】根据同类项的定义:字母相同且相同字母的指数也相同的单项式,即可列式求解.
【详解】解:3amb2n与-2bn+1a2是同类项,
m=2,n+1=2n,
解得m=2,n=1,
故答案为:.
【点睛】本题考查同类项的定义,根据同类项的定义列出方程求解是解决问题的关键.
4.(2022·黑龙江·哈尔滨市风华中学校阶段练习)若与是同类项,则________.
【答案】8
【分析】由单项式与是同类项,由同类项的定义可求得m和n的值,再代入计算即可求解.
【详解】解:∵单项式与是同类项,
∴m=6,n=2,
∴m+n=6+2=8,
故答案为:8.
【点睛】本题考查了同类项,解决本题的关键是明确同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.
5.(2022·黑龙江·哈尔滨市七年级期中)已知与的和是单项式,则式子的值是___________.
【答案】
【分析】根据题意可知和是同类项,根据同类项的概念求出m,n的值,然后代入计算即可.
【详解】解:∵与的和仍是单项式,
∴和是同类项,
,,
, ,
,
故答案为:-1.
【点睛】本题主要考查同类项,代数式求值,掌握同类项的概念是解题的关键.
6.(2022·黑龙江·哈尔滨工业大学附属中学校期中)若单项式和是同类项,则的值为_________.
【答案】5
【分析】根据同类项是字母相同,相同字母的指数也相同的两个单项式进行求解即可.
【详解】解:∵单项式和是同类项,
∴n-1=4,m=1,
∴n=5,
∴mn=5×1=5,
故答案为:5.
【点睛】本题考查代数式求值、同类项,理解同类项的概念是解答的关键.
题型6 . 添括号与去括号
1.(2022·内蒙古赤峰·七年级期末)下列去括号正确的是( )
A. B.
C. D.
【答案】B
【分析】根据去括号法则逐项分析判断即可.
【详解】解:A. ,故该选项不正确,不符合题意;
B. ,故该选项正确,符合题意;
C. ,故该选项不正确,不符合题意;
D. ,故该选项不正确,不符合题意;
故选B
【点睛】本题考查了去括号,掌握去括号法则是解题的关键.括号前面是加号时,去掉括号,括号内的算式不变,括号前面是减号时,去掉括号,括号内加号变减号,减号变加号,法则的依据实际是乘法分配律.
2.(2022·黑龙江大庆·期中)下列去括号正确的是( )
A.
B.
C.
D.
【答案】D
【分析】根据去括号法则进行判断即可.
【详解】解:A.,故A错误,不符合题意;
B.,故B错误,不符合题意;
C.,故C错误,不符合题意;
D.,故D正确,符合题意.故选:D.
【点睛】本题主要考查了去括号法则,解题的关键是熟练掌握去括号法则,注意括号前面为负号的的将负号和括号去掉后,括号里面的每一项符号要发生改变.
3.(2021·河北承德·七年级期末)下列整式中,去括号后得a-b+c的是( )
A.a-(b+c) B.-(a-b)+c C.-a-(b+c) D.a-(b-c)
【答案】D
【分析】根据去括号法则解答.
【详解】解:A、原式=a﹣b﹣c,故本选项不符合题意.
B、原式=﹣a+b+c,故本选项不符合题意.
C、原式=-a﹣b﹣c,故本选项不符合题意.
D、原式=a﹣b+c,故本选项符合题意.故选:D.
【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.
4.(2022·全国·七年级专题练习)下列式子正确的是( )
A. B.
C. D.
【答案】B
【分析】利用去括号法则和添括号法则即可作出判断.
【详解】解:,故A不符合题意;
,故B符合题意;
故C不符合题意;
,故D不符合题意;故选B
【点睛】本题考查去括号与添括号,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“-”,添括号后,括号里的各项都改变符号.去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.
5.(2022·全国·七年级专题练习)下列添括号正确的是( )
A.﹣b﹣c=﹣(b﹣c) B.﹣2x+6y=﹣2(x﹣6y)
C.a﹣b=+(a﹣b) D