分享
2023届浙江省温州十五校联合体高三第二次模拟考试数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 浙江省 温州 十五 联合体 第二次 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合,,则( ) A. B. C. D. 2.已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是( ) A. B. C. D. 3.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( ) A. B. C. D. 4.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为( ) A. B. C. D. 5.若复数满足,则( ) A. B. C. D. 6. “”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 7.若不等式对于一切恒成立,则的最小值是 ( ) A.0 B. C. D. 8.已知复数为虚数单位) ,则z 的虚部为( ) A.2 B. C.4 D. 9.函数的图象如图所示,则它的解析式可能是( ) A. B. C. D. 10.已知函数,若对任意,都有成立,则实数的取值范围是( ) A. B. C. D. 11.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A.丙被录用了 B.乙被录用了 C.甲被录用了 D.无法确定谁被录用了 12.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知平面向量,的夹角为,且,则=____ 14.不等式的解集为________ 15.如图,已知扇形的半径为1,面积为,则_____. 16.直线是圆:与圆:的公切线,并且分别与轴正半轴,轴正半轴相交于,两点,则的面积为_________ 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上 8:30 之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表: 日期 1 日 2 日 3 日 4 日 5 日 6 日 7 日 8 日 9 日 10 日 元件A个数 9 15 12 18 12 18 9 9 24 12 日期 11 日 12 日 13 日 14 日 15 日 16 日 17 日 18 日 19 日 20 日 元件A个数 12 24 15 15 15 12 15 15 15 24 从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数. (Ⅰ)求X的分布列与数学期望; (Ⅱ)若a,b,且b-a=6,求最大值; (Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论) 18.(12分)已知在多面体中,平面平面,且四边形为正方形,且//,,,点,分别是,的中点. (1)求证:平面; (2)求平面与平面所成的锐二面角的余弦值. 19.(12分)唐诗是中国文学的瑰宝.为了研究计算机上唐诗分类工作中检索关键字的选取,某研究人员将唐诗分成7大类别,并从《全唐诗》48900多篇唐诗中随机抽取了500篇,统计了每个类别及各类别包含“花”、“山”、“帘”字的篇数,得到下表: 爱情婚姻 咏史怀古 边塞战争 山水田园 交游送别 羁旅思乡 其他 总计 篇数 100 64 55 99 91 73 18 500 含“山”字的篇数 51 48 21 69 48 30 4 271 含“帘”字的篇数 21 2 0 0 7 3 5 38 含“花”字的篇数 60 6 14 17 32 28 3 160 (1)根据上表判断,若从《全唐诗》含“山”字的唐诗中随机抽取一篇,则它属于哪个类别的可能性最大,属于哪个类别的可能性最小,并分别估计该唐诗属于这两个类别的概率; (2)已知检索关键字的选取规则为: ①若有超过95%的把握判断“某字”与“某类别”有关系,则“某字”为“某类别”的关键字; ②若“某字”被选为“某类别”关键字,则由其对应列联表得到的的观测值越大,排名就越靠前; 设“山”“帘”“花”和“爱情婚姻”对应的观测值分别为,,.已知,,请完成下面列联表,并从上述三个字中选出“爱情婚姻”类别的关键字并排名. 属于“爱情婚姻”类 不属于“爱情婚姻”类 总计 含“花”字的篇数 不含“花”的篇数 总计 附:,其中. 0.05 0.025 0.010 3.841 5.024 6.635 20.(12分)己知,函数. (1)若,解不等式; (2)若函数,且存在使得成立,求实数的取值范围. 21.(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为. (1)当直线的倾斜角为时,求线段AB的中点的横坐标; (2)设点A关于轴的对称点为C,求证:M,B,C三点共线; (3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围. 22.(10分)随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下: 级数 一级 二级 三级 四级 每月应纳税所得额(含税) 不超过3000元的部分 超过3000元至12000元的部分 超过12000元至25000元的部分 超过25000元至35000元的部分 税率 3 10 20 25 (1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少? (2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 先求出集合B,再与集合A求交集即可. 【题目详解】 由已知,,故,所以. 故选:D. 【答案点睛】 本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题. 2、A 【答案解析】 双曲线﹣=1的渐近线方程为y=x, 不妨设过点F1与双曲线的一条渐过线平行的直线方程为y=(x﹣c), 与y=﹣x联立,可得交点M(,﹣), ∵点M在以线段F1F1为直径的圆外, ∴|OM|>|OF1|,即有+>c1, ∴>3,即b1>3a1, ∴c1﹣a1>3a1,即c>1a. 则e=>1. ∴双曲线离心率的取值范围是(1,+∞). 故选:A. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 3、B 【答案解析】 根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解. 【题目详解】 从八卦中任取两卦基本事件的总数种, 这两卦的六根线中恰有四根阴线的基本事件数有6种, 分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮), 所以这两卦的六根线中恰有四根阴线的概率是. 故选:B 【答案点睛】 本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题. 4、A 【答案解析】 若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得. 【题目详解】 解:, ∴, 设, ∴, 当时,,函数单调递增, 当时,,函数单调递减, ∴, 当时,,当,, 函数恒过点, 分别画出与的图象,如图所示, , 若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值, ∴且,即,且 ∴, 故实数m的最大值为, 故选:A 【答案点睛】 本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力. 5、C 【答案解析】 化简得到,,再计算复数模得到答案. 【题目详解】 ,故, 故,. 故选:. 【答案点睛】 本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力. 6、B 【答案解析】 或,从而明确充分性与必要性. 【题目详解】 , 由可得:或, 即能推出, 但推不出 ∴“”是“”的必要不充分条件 故选 【答案点睛】 本题考查充分性与必要性,简单三角方程的解法,属于基础题. 7、C 【答案解析】 试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论. 解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立, ∵y=-x-在区间上是增函数 ∴ ∴a≥- ∴a的最小值为-故答案为C. 考点:不等式的应用 点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开