温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
山西省
朔州市
怀仁
中高
三二诊
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设直线过点,且与圆:相切于点,那么( )
A. B.3 C. D.1
2.已知函数在上有两个零点,则的取值范围是( )
A. B. C. D.
3.已知平行于轴的直线分别交曲线于两点,则的最小值为( )
A. B. C. D.
4.函数的图象可能为( )
A. B.
C. D.
5. “”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.已知数列的前项和为,且,,,则的通项公式( )
A. B. C. D.
7.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是( )
A. B. C. D.
8.已知复数是纯虚数,其中是实数,则等于( )
A. B. C. D.
9.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为
A.96 B.84 C.120 D.360
10.在中,点为中点,过点的直线与,所在直线分别交于点,,若,,则的最小值为( )
A. B.2 C.3 D.
11.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )
A.1194 B.1695 C.311 D.1095
12.已知,,,则的大小关系为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.
14.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_________.
15.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)
16.已知数列为等比数列,,则_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;
(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:
①点的极角;
②面积的取值范围.
18.(12分)(江苏省徐州市高三第一次质量检测数学试题)在平面直角坐标系中,已知平行于轴的动直线交抛物线: 于点,点为的焦点.圆心不在轴上的圆与直线, , 轴都相切,设的轨迹为曲线.
(1)求曲线的方程;
(2)若直线与曲线相切于点,过且垂直于的直线为,直线, 分别与轴相交于点, .当线段的长度最小时,求的值.
19.(12分)如图,在正三棱柱中,,,分别为,的中点.
(1)求证:平面;
(2)求平面与平面所成二面角锐角的余弦值.
20.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分别是AC,B1C1的中点.求证:
(1)MN∥平面ABB1A1;
(2)AN⊥A1B.
21.(12分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.
(1)求BC的长度;
(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?
22.(10分)已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.
(1)求的方程;
(2)过点的直线与相交于、两点,与相交于、两点,且与同向,设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形;
(3)为上的动点,、为长轴的两个端点,过点作的平行线交椭圆于点,过点作的平行线交椭圆于点,请问的面积是否为定值,并说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
过点的直线与圆:相切于点,可得.因此,即可得出.
【题目详解】
由圆:配方为,
,半径.
∵过点的直线与圆:相切于点,
∴;
∴;
故选:B.
【答案点睛】
本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.
2、C
【答案解析】
对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.
【题目详解】
∵ ,.
当时,,在上单调递增,不合题意.
当时,,在上单调递减,也不合题意.
当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.
综上,的取值范围是.
故选C.
【答案点睛】
本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.
3、A
【答案解析】
设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值.
【题目详解】
解:设直线为,则,,
而满足,
那么
设,则,函数在上单调递减,在上单调递增,
所以
故选:.
【答案点睛】
本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.
4、C
【答案解析】
先根据是奇函数,排除A,B,再取特殊值验证求解.
【题目详解】
因为,
所以是奇函数,故排除A,B,
又,
故选:C
【答案点睛】
本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.
5、B
【答案解析】
或,从而明确充分性与必要性.
【题目详解】
,
由可得:或,
即能推出,
但推不出
∴“”是“”的必要不充分条件
故选
【答案点睛】
本题考查充分性与必要性,简单三角方程的解法,属于基础题.
6、C
【答案解析】
利用证得数列为常数列,并由此求得的通项公式.
【题目详解】
由,得,可得().
相减得,则(),又
由,,得,所以,所以为常
数列,所以,故.
故选:C
【答案点睛】
本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.
7、D
【答案解析】
由几何概型可知,概率应为非小正方形面积与窗花面积的比,即可求解.
【题目详解】
由题,窗花的面积为,其中小正方形的面积为,
所以所求概率,
故选:D
【答案点睛】
本题考查几何概型的面积公式的应用,属于基础题.
8、A
【答案解析】
对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.
【题目详解】
因为为纯虚数,所以,得
所以.
故选A项
【答案点睛】
本题考查复数的四则运算,纯虚数的概念,属于简单题.
9、B
【答案解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B.
10、B
【答案解析】
由,,三点共线,可得,转化,利用均值不等式,即得解.
【题目详解】
因为点为中点,所以,
又因为,,
所以.
因为,,三点共线,
所以,
所以,
当且仅当即时等号成立,
所以的最小值为1.
故选:B
【答案点睛】
本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
11、D
【答案解析】
确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和.
【题目详解】
时,,所以数列的前35项和中,有三项3,9,27,有32项,所以.
故选:D.
【答案点睛】
本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础.解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的.
12、A
【答案解析】
根据指数函数与对数函数的单调性,借助特殊值即可比较大小.
【题目详解】
因为,
所以.
因为,
所以,
因为,为增函数,
所以
所以,
故选:A.
【答案点睛】
本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
(1)先算出正四面体的体积,六面体的体积是正四面体体积的倍,即可得出该六面体的体积;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,求出球的半径,再代入球的体积公式可得答案.
【题目详解】
(1)每个三角形面积是,由对称性可知该六面是由两个正四面合成的,
可求出该四面体的高为,故四面体体积为,
因此该六面体体积是正四面体的2倍, 所以六面体体积是;
(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,
连接球心和五个顶点,把六面体分成了六个三棱锥设球的半径为,
所以, 所以球的体积.
故答案为:;.
【答案点睛】
本题考查由平面图形折成空间几何体、考查空间几何体的的表面积、体积计算,考查逻辑推理能力和空间想象能力求解球的体积关键是判断在什么情况下,其体积达到最大,考查运算求解能力.
14、360
【答案解析】
先计算第一块小矩形的面积,第二块小矩形的面积,,面积和超过0.5,所以中位数在第二块求解,然后再求得平均数作差即可.
【题目详解】
第一块小矩形的面积,第二块小矩形的面积,
故;
而,
故.
故答案为:360.
【答案点睛】
本题考查频率分布直方图、样本的数字特征,考查运算求解能力以及数形结合思想,属于基础题.
15、
【答案解析】
根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解.
【题目详解】
棱长为2的正方体中,点分别为棱的中