分享
3反比例 一课时.docx
下载文档

ID:2797632

大小:197.49KB

页数:6页

格式:DOCX

时间:2024-01-03

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
反比例 一课时 课时
添加微信:car4900,免费领小学资料 反比例 教材第47、第48页。 1. 理解反比例的意义,能根据反比例的意义正确地判断两种量是否成反比例关系。 2. 提高学生归纳、总结和概括的能力。 3. 通过学习,渗透辩证唯物主义观点。 重点:反比例的意义。 难点:正确判断两种量是否成反比例关系。 课件。 1. 下面两种量是否成正比例关系?为什么?    数量/本 1 2 4 6 总价/元 0.80 1.60 3.20 4.80        2. 成正比例的量有什么特征? 3. 这节课,我们继续学习常见的数量关系——成反比例的量。 1. 教学例2。 (1)出示教材第47页例2。 杯子的底面积/cm2 10 15 20 30 60 … 水的高度/cm 30 20 15 10 5 …   观察上表回答下面的问题: (1)表中有哪两种量? (2)水的高度是怎样随着杯子底面积的大小变化而变化的? (3)相对应的杯子的底面积与水的高度的乘积分别是多少?   提问:从中你发现了什么?本题与教材第45页例1有什么不同? (2)学生讨论交流。 (3)引导学生回答: ①表中的两个量是杯子的底面积和水的高度。 ②杯子的底面积扩大,水的高度反而缩小;杯子的底面积缩小,水的高度反而扩大。 ③每两个相对应的数的乘积都是300 。 想一想:杯子的底面积和水的高度是两种相关联的量吗?为什么? 议一议:两种量的变化有什么规律? (随着学生回答,板书:积一定) 教师提问:这个300实际上就是什么?(板书:体积) 教师指着板书提问:底面积、高和体积,怎样用式子表示它们的关系? (板书:底面积×高=体积) 2. 拓展延伸。 出示表格,让学生根据题意口述填表。 每本张数 30 20 15 10 5 装订本数 10 15 20 30 60 总张数   (1)让学生观察上表,引导学生回答下列问题: ①表中有哪两种量?(板书:每本张数、装订本数)它们是相关联的量吗? ②装订的本数是怎样随着每本的张数变化的? ③表中的两种量有什么变化规律? (2)学生讨论找出答案后,教师提问:这个积300实际是什么?(板书:纸的总张数) 比较例2和拓展延伸练习,概括反比例的意义。找出它们有什么相同点。(学生互相讨论) (3) 教师引导学生明确:在例2中,底面积是随着高的变化而变化,并且它们的积,也就是体积是一定的。我们就说高和底面积是成反比例的。 (4)议一议:在练习里,有哪两种量?它们是不是相关联的量?为什么? 师:如果用字母x和y表示两种相关联的量,用k表示它们的积(一定),反比例关系可以用一个什么样的式子表示?〔板书:xy=k(一定)〕 【设计意图:借助学生已经掌握的正比例的意义,引导学生自主探究反比例的意义,并在拓展延伸中巩固、提高对本节知识点的掌握以及灵活应用所学知识】 师:在本节课的学习中,你有哪些收获? 学生自由交流各自的收获、体会。 成反比例的量 A类 1. 成反比例的量应具备什么条件? 2. 判断下面每题中的两个量是不是成反比例关系,并说明理由。 (1)路程一定,速度和时间。     (2)小明从家到学校,每分走的路程和所需时间。 (3)平行四边形的面积一定,底和高。 (4)小林做10道数学题,已做的题和没有做的题。 (5)小明拿一些钱买铅笔,单价和购买的数量。 (考查知识点:反比例;能力要求:运用所学知识解决简单的实际问题) B类 你能举一个生活中成反比例的例子吗? (考查知识点:反比例;能力要求:运用所学知识解决简单的问题) 课堂作业新设计 A类: 1.略 2. (1)是 (2)是 (3)是 (4)不是 (5)是 理由略 B类: 略 教材习题 第48页“做一做” (1)每天运的吨数和运货的天数是表中的两种量,它们是相关联的量。 (2)300×1=300 150×2=300 100×3=300 积相等;这个积表示的是这批货物的总吨数。 (3)运货的天数与每天运的吨数成反比例关系;因为运货的天数与每天运的吨数是两种相关联的量,一种量变化,另一种量也随着变化,且运货的天数×每天运的吨数=这批货物的总吨数(一定),也就是乘积一定,所以运货的天数与每天运的吨数成反比例关系。 第49页“练习九” 1. (1)60∶120=0.5 65∶130=0.5 55∶110=0.5 60∶120=0.5 65∶130=0.5 75∶150=0.5 比值相等 (2)这个比值表示的是每千瓦时电的价钱,或电的单价。 (3)电费与相应的用电量成正比例关系;因为电费与相应的用电量是两种相关联的量,一种量变化,另一种量也随着变化,且电费÷用电量=每千瓦时电的单价(一定),也就是比值一定,所以电费与相应的用电量成正比例关系。 2. (1)订阅的费用与订阅的数量成正比例关系;因为订阅的费用与订阅的数量是两种相关联的量,一种量变化,另一种量也随着变化,且订阅的费用÷订阅的数量=《小学生作文》的单价(一定),也就是比值一定,所以订阅的费用与订阅的数量成正比例关系。 (2)正方体的表面积与它的棱长不成正比例关系;因为如果正方体的棱长是变量,它们的比值就不一定,所以正方体的表面积与它的棱长不成正比例关系。 (3)一个人的身高与他的年龄不成正比例关系;因为一个人的身高和他的年龄不是两种相关联的量。 (4)小麦的总产量与公顷数成正比例关系;因为小麦的总产量与公顷数是两种相关联的量,一种量变化,另一种量也随着变化,且小麦的总产量÷公顷数=小麦每公顷产量(一定),也就是比值一定,所以小麦的总产量与公顷数成正比例关系。 (5)未读的页数与已读的页数不成正比例关系;因为未读的页数与已读的页数的比值不一定,所以未读的页数与已读的页数不成正比例关系。 3. (1)汽车的耗油量与所行路程成正比例关系;因为汽车的耗油量与所行路程是两种相关联的量,一种量变化,另一种量也随着变化,且汽车的耗油量÷所行路程=每千米的耗油量(一定),也就是比值一定,所以汽车的耗油量与所行路程成正比例关系。 (2)所有的点都在同一条线上。 (3)汽车行驶55km的耗油量大约是7.3L。 4. 5 3 12.5 8 25 15 50 5. (1) (特点略) (2)影长与树高成正比例关系;因为影长与树高是两种相关联的量,一种量变化,另一种量也随着变化,且影长÷树高=每米树高的影长(一定),也就是比值一定,所以影长与树高成正比例关系。 6. 6 8 10 12 (1)表中的2n表示自然数n的2倍。 (2)发现:所有的点都在同一条线上。 7. 1.5 2 2.5 3 (1) (2)3.5元 (3)4倍 8. 所需地砖的数量与每块地砖的面积成反比例关系;因为所需地砖的数量与每块地砖的面积是两种相关联的量,一种量变化,另一种量也随着变化,且每块地砖的面积×所需地砖的数量=铺地的总面积(一定),也就是积一定,所以所需地砖的数量与每块地砖的面积成反比例关系。 9. 所装瓶数与每瓶容量成反比例关系;因为所装瓶数与每瓶容量是两种相关联的量,一种量变化,另一种量也随着变化,且所装瓶数×每瓶容量=这批新酿醋的总量(一定),也就是积一定,所以所装瓶数与每瓶容量成反比例关系。 10. 50 100 0.25 12 11. (1)使用天数与每天的平均用煤量成反比例关系;因为使用天数与每天的平均用煤量是两种相关联的量,一种量变化,另一种量也随着变化,且使用天数×每天的平均用煤量=煤的数量(一定),也就是积一定,所以使用天数与每天的平均用煤量成反比例关系。 (2)组数与每组的人数成反比例关系;因为组数与每组的人数是两种相关联的量,一种量变化,另一种量也随着变化,且组数×每组的人数=全班的人数(一定),也就是积一定,所以组数与每组的人数成反比例关系。 (3)圆柱的底面积与高成反比例关系;因为圆柱的底面积与高是两种相关联的量,一种量变化,另一种量也随着变化,且圆柱的底面积×高=圆柱体积(一定),也就是积一定,所以圆柱的底面积与高成反比例关系。 (4)在一块菜地上种的黄瓜与西红柿的面积不成反比例关系;因为它们的积不一定,所以在一块菜地上种的黄瓜与西红柿的面积不成反比例关系。 (5)包数与每包的册数成反比例关系;因为包数与每包的册数是两种相关联的量,一种量变化,另一种量也随着变化,且包数×每包的册数=书的总册数(一定),也就是积一定,所以包数与每包的册数成反比例关系。 12. (1)p·t=600×20=12000(部) (2)p与t成反比例关系;因为p与t是两种相关联的量,一种量变化,另一种量也随着变化,且pt=组装的手机总数(一定),也就是积一定,所以p与t成反比例关系。 (3)12000÷8=1500(部) 13. (1)260×5=1300(千米) (2)t与v成反比例关系;vt=路程(一定)。 (3)1300÷325=4(时) 14. (1)斑马的奔跑路程与奔跑时间成正比例关系;长颈鹿的奔跑路程与奔跑时间成正比例关系。 (2)斑马18分钟跑21.6千米;长颈鹿18分钟跑14.4千米。 (3)从图象上看,斑马跑得快。 15*. (1)反 (2)正 (3)正 16*. y与x成反比例关系;如果把它们的关系用图象表示出来,它的图象不是一条直线。 添加微信:car4900,免费领小学资料

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开