温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
山东省
青岛市
黄岛区高三
第三次
测评
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.( )
A. B. C. D.
2.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )
A. B. C. D.
3.已知集合,,若,则( )
A.4 B.-4 C.8 D.-8
4.在中,是的中点,,点在上且满足,则等于( )
A. B. C. D.
5.若,则, , , 的大小关系为( )
A. B.
C. D.
6.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为( )
A. B. C. D.
7.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为( )
A. B. C. D.
8.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是( )
A.1 B.-3 C.1或 D.-3或
9.已知集合,,则( )
A. B. C. D.
10.已知三点A(1,0),B(0, ),C(2,),则△ABC外接圆的圆心到原点的距离为( )
A. B.
C. D.
11.设为非零向量,则“”是“与共线”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
12.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若实数,满足不等式组,则的最小值为______.
14.已知向量,,若满足,且方向相同,则__________.
15.在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点.若以AB为直径的圆与圆x2+(y-2)2=1相外切,且∠APB的大小恒为定值,则线段OP的长为_____.
16.在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.
(1)求椭圆的方程;
(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.
18.(12分)已知函数在上的最大值为3.
(1)求的值及函数的单调递增区间;
(2)若锐角中角所对的边分别为,且,求的取值范围.
19.(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:
年份
2011
2012
2013
2014
2015
2016
2017
2018
年生产台数(万台)
2
3
4
5
6
7
10
11
该产品的年利润(百万元)
2.1
2.75
3.5
3.25
3
4.9
6
6.5
年返修台数(台)
21
22
28
65
80
65
84
88
部分计算结果:,,,
,
注:年返修率=
(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;
(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).
附:线性回归方程中, ,.
20.(12分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.
(1)求抛物线C的方程;
(2)若F在线段上,P是的中点,证明:.
21.(12分)武汉有“九省通衢”之称,也称为“江城”,是国家历史文化名城.其中著名的景点有黄鹤楼、户部巷、东湖风景区等等.
(1)为了解“五·一”劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:
现从年龄在内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在内的人数为,求;
(2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3艘型游船供游客乘坐观光.由2010到2019这10年间的数据资料显示每年劳动节当日客流量(单位:万人)都大于1.将每年劳动节当日客流量数据分成3个区间整理得表:
劳动节当日客流量
频数(年)
2
4
4
以这10年的数据资料记录的3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.
该游船中心希望投入的型游船尽可能被充分利用,但每年劳动节当日型游船最多使用量(单位:艘)要受当日客流量(单位:万人)的影响,其关联关系如下表:
劳动节当日客流量
型游船最多使用量
1
2
3
若某艘型游船在劳动节当日被投入且被使用,则游船中心当日可获得利润3万元;若某艘型游船劳动节当日被投入却不被使用,则游船中心当日亏损0.5万元.记(单位:万元)表示该游船中心在劳动节当日获得的总利润,的数学期望越大游船中心在劳动节当日获得的总利润越大,问该游船中心在2020年劳动节当日应投入多少艘型游船才能使其当日获得的总利润最大?
22.(10分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.
(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;
(Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
利用复数代数形式的乘除运算化简得答案.
【题目详解】
.
故选B.
【答案点睛】
本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
2、C
【答案解析】
利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解.
【题目详解】
由题意,直角三角形的斜边长为,
利用等面积法,可得其内切圆的半径为,
所以向次三角形内投掷豆子,则落在其内切圆内的概率为.
故选:C.
【答案点睛】
本题主要考查了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力.
3、B
【答案解析】
根据交集的定义,,可知,代入计算即可求出.
【题目详解】
由,可知,
又因为,
所以时,,
解得.
故选:B.
【答案点睛】
本题考查交集的概念,属于基础题.
4、B
【答案解析】
由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.
【题目详解】
解:∵M是BC的中点,知AM是BC边上的中线,
又由点P在AM上且满足
∴P是三角形ABC的重心
∴
又∵AM=1
∴
∴
故选B.
【答案点睛】
判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.
5、D
【答案解析】
因为,所以,
因为,,所以,.
综上;故选D.
6、D
【答案解析】
由题意得,再利用基本不等式即可求解.
【题目详解】
将平方得,
(当且仅当时等号成立),
,
的最小值为,
故选:D.
【答案点睛】
本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.
7、B
【答案解析】
设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值.
【题目详解】
设棱长为1,,,
由题意得:,,
,
又
即异面直线与所成角的余弦值为:
本题正确选项:
【答案点睛】
本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.
8、D
【答案解析】
由题得,解方程即得k的值.
【题目详解】
由题得,解方程即得k=-3或.
故答案为:D
【答案点睛】
(1)本题主要考查点到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2) 点到直线的距离.
9、D
【答案解析】
先求出集合B,再与集合A求交集即可.
【题目详解】
由已知,,故,所以.
故选:D.
【答案点睛】
本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.
10、B
【答案解析】
选B.
考点:圆心坐标
11、A
【答案解析】
根据向量共线的性质依次判断充分性和必要性得到答案.
【题目详解】
若,则与共线,且方向相同,充分性;
当与共线,方向相反时,,故不必要.
故选:.
【答案点睛】
本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.
12、A
【答案解析】
由直线过椭圆的左焦点,得到左焦点为,且,
再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解.
【题目详解】
由题意,直线经过椭圆的左焦点,令,解得,
所以,即椭圆的左焦点为,且 ①
直线交轴于,所以,,
因为,所以,所以,
又由点在椭圆上,得 ②
由,可得,解得,
所以,
所以椭圆的离心率为.
故选A.
【答案点睛】
本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出 ,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).
二、填空题:本题共4小题,每小题5分,共20分。
13、5
【答案解析】
根据题意,画出图像,数形结合,将目标转化为求动直线纵截距的最值,即可求解
【题目详解】
画出不等式组,表示的平面区域如图阴影区域所示,
令,则.分析知,当,时,取得最小值,且.
【答案点睛】
本题考查线性规划问题,属于基础题
14、
【答案解析】
由向量平行坐标表示计算.注意验证两向量方向是否相同.
【题目详解】
∵,∴,解得或,
时,满足题意,
时,,方向相反,不合题意,舍去.
∴.
故答案为:1.
【答案点睛】
本题考查向量平行的坐标运算,解题时要注意验证方向相同这个条件,否则会出错.
15、
【答案解析】
分析:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),利用差角的正切公式,结合以AB为直径的圆与圆x2+(y-2)2=1相外切.且∠APB的大小恒为定值,即可求出线段OP的长.
详解:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),则
∵∠APB的大小恒为定值,
∴t=,∴|OP|=.
故答案为
点睛:本题考查圆与圆的位置关系,考查差角的