分享
小升初数学 应用题综合训练(七) 苏教版.doc
下载文档

ID:2786211

大小:89KB

页数:3页

格式:DOC

时间:2024-01-02

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
小升初数学 应用题综合训练七 苏教版 小升初 数学 应用题 综合 训练
小升初数学-应用题综合训练(七)   61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?   假设:今年不结果的果树看作1份,结果的就是5份。   那么,去年不结果的果树就是1份多160棵, 结果的就是2份多160×2+60=380棵   所以,160+380=540棵果树相当于5-2=3份, 每份就是540÷3=180棵   所以,果树一共有180×(5+1)=1080棵   62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?   解:李刚行16分钟的路程,小明要行48×2+16=112分钟。   所以李刚和小明的速度比是112:16=7:1   小明行一个全程,李刚就可以行7个全程。   当李刚行到第2、4、6个全程时,会追上小明。 因此追上3次这是一个关于相遇次数的复杂问题。解决这类问题最好是画线段帮助分析。   李刚在第一次相遇后16分钟追上小明,如果把小明在这16分钟行的路程看成一份,   那么李刚就行了这样的:48/16*2+1=7份,其中包括小明在48分钟内行的路程的二倍以及小明在相遇后的16分钟内行的路程。   也就是说李刚的速度是小明的7倍。   因此,当小明到达乙地,行了一个全程时,李刚行了7个全程。   在这7个全程中,有4次是从乙地到甲地,与小明是相遇运动,另外3个全程是从甲地到乙地,与小明是追及运动,因此李刚共追上小明3次。   63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?   解法一:父亲走一步行100÷120=5/6米,小明一步行100÷180=5/9米   父亲行450米用了450÷5/6=540步,小明行540步行了540×5/9=300米。   相差450-300=150米。   还要行150÷(5/6+5/9)=108步   解法二:父子俩共走450×2=900米 其中父亲走的路程为900×180/(180+120)=540米   父亲往回走的路程540-450=90米   还要走120×90/100=108步父子俩共走450*2=900米 其中父亲走的路程为900*180/(180+120)=540米   父亲往回走的路程540-450=90米   还要走120*90/100=108步   64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.   解:顺水航行每小时行全程的1/4,逆水航行每小时行全程是1/7。   顺水速度-逆水速度=水速×2,   所以全程是6×2÷(1/4-1/7)=112千米   顺水比逆水每小时多行 6×2=12千米 顺水4小时比逆水4小时多行 12×4=48千米   这多出的48千米需要逆水行 7-4=3小时   逆水行驶的速度为 48÷3=16千米   两个港口之间的距离为 16×7=112千米   65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?   解:乙行40分钟的路程,丙行40+10=50分钟, 乙和丙的速度比是50:40=5:4   甲行60分钟的路程,丙行60+10+10=80分钟 甲和丙的速度比是80:60=4:3   甲乙丙三人的速度比是4×4:5×3:4×3=16:15:12   乙比甲早行10分钟,甲和乙的时间比是15:16   所以,甲出发后10÷(16-15)×15=150分钟追上乙。   66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?   解: 甲在合作时的工效是:1/11*(1+1/10)=1/10   甲乙合作的工效是:1/6 因此乙在合作时的工效是:1/6-1/10=1/15   乙在单独工作时的工效是:1/15/(1+1/5)=1/18   因此乙单独做需要:1/1/18=18小时。   67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?   五名学生从左到右依次是:   A D B C E   各拿小旗   8 2 1 5 4   分析如下:   由   (10)B   (8)D   (16)E   得DBE三者排列次序   由C(11)得C排在E前   而A只能排第一,因为D不可能排第一   68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?   由于每秒5米和每秒4米时间相等   所以全程的平均速度是:(4+5)/2=4.5m/s   全程用时间为:360/4.5=80s   一半时间为:40秒   一半路程为:360/2=180m   用4m/s跑的路程为:4*40=160m   后半路程用5m/s跑的路程为:180-160=20m   后半路程用5m/s跑的时间为:20/5=4s   因此后一半路程用时间t=用4m/s跑的时间+后半路程用的5m/s跑的时间   t=40+4=44秒   69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.   速度60/(18-15)=20米/秒   全长20*15=300米   70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?   解:去时,步行的路程是全程的1/2,   回来时,步行的路程占全程的2/3×5÷(2/3×5+1/3×15)=2/5。   所以行1/2-2/5=1/10的路程步行需要2÷(15-5)×15=3小时,   所以步行完全程需要3÷1/10=30小时。   所以小明家到学校30×5=150千米 3 教育

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开