分享
Bernoulli泛函上基于典则酉对合的量子熵.pdf
下载文档

ID:2749315

大小:523.39KB

页数:9页

格式:PDF

时间:2023-11-29

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
Bernoulli 泛函上 基于 典则酉 量子
Pure Mathematics n,2023,13(8),2231-2239Published Online August 2023 in Hans.https:/www.hanspub.org/journal/pmhttps:/doi.org/10.12677/pm.2023.138229Bernoulliu;Kj?f?444)?“O?=vF2023c6?26FF2023c7?27FuF2023c8?3F f Bernoulli D(QBNs)uBernoulli m?O)fxv?;K?X(CAR)?O)f?fBernoulli m?gfBernoulli?;Kj?uBernoulli m?fm?;Kj?E?af?Tf?f?9f?eZ5cfBernoulli D(jf?Quantum Entropy Based onCanonical Unitary Involutionon Bernoulli FunctionalShengsheng LiuCollege of Mathematics and statistics,Northwest Normal University,Lanzhou GansuReceived:Jun.26th,2023;accepted:Jul.27th,2023;published:Aug.3rd,2023:4).Bernoulliu;Kj?f?J.n,2023,13(8):2231-2239.DOI:10.12677/pm.2023.1382294)AbstractQuantum Bernoulli noises(QBNs)are the family of annihilation and creation operatorsacting on the space of square integrable Bernoulli functional,which satisfy a canonicalanti-commutation relation(CAR)in equal time.The sum operator of annihilationand creation operator is a series of self-adjoint operator on Bernoulli functional space,which is called canonical unitary involution on Bernoulli functional.In this paper,based on the canonical unitary involution on the subspace of the Bernoulli functionalspace,we construct a class of density operators,and consider the quantum entropy ofthe density operator and some properties of the quantum entropy.KeywordsQuantum Bernoulli Noises,Unitary Involution,Quantum EntropyCopyright c?2023 by author(s)and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License(CC BY 4.0).http:/creativecommons.org/licenses/by/4.0/1.f&Eny“n?:1,2,f?Kf&En?-,3nf?=k-?nd,?ykX2?Ac.VonNeumann?-?f?,5&EX?(5.f Bernoulli D(QBNs)uBernoulli m?O)fxk,kk0,v?;K?X(CAR),3mfXk-3.Cc5,QBNs?2 49.Pk=k+k(k 0),=Bernoulli?O)f?f,K?gf,Bernoulli?;Kj.z 10;Kj,y?fi?4n,z 11?;Kj?6,?da6fzf?fi?.?ulmfBernoulli D(,af?f?,LXe:?;Kjk,?E?Bernoulli mh?kfmhn?XeagDOI:10.12677/pm.2023.1382292232n4)fk+tI,0 k n,t 1,I hn?f,y?afkKA?,?hn?,af,dd?E?af,?af?f?9f?eZ5.?(?SXe:312,?ufBernoulli D(?,0?A-?n;13?,u;Kj?E?f?f?9eZ5.2.f Bernoulli D(3?!,/?f Bernoulli D(QBNs)?Vg,P9(.SNz 3.?N K?8,LN?k8,=|N#,#L8?.?=1,1NLkN?:N 7 1,1?8,(n)n0L3?;KKS?,zn 0,kn()=(n),.F=(n;n 0)dS?(n)n0)?;?(pn)n0?S?,0 pn 1,n 0.o3m(,F)3?VP,?P (n1,n2,nk)1(?1,?2,?k)=kYj=1p1+?j2njp1?j2nj,k 1,?j 1,1,nj N(1 j k)v:?i 6=j,ni6=nj.d?Vm(,F,P),Bernoulli m,Tm?EC Bernoulli.?Z=(Zn)n0CS?(n)n0)?Bernoulli,=Zn=n+qn pn2pnqn,n 0,qn=1 pn.w,Z=(Zn)n0Vm(,F,P)?C.?L2(,F,P)Z=(Zn)n0?Bernoulli?m,h L,=h=L2(,F,P).h,i k k Lh?S,?h,i u1C?5,u1?C5.dz 12,Z kbL5.KZ=Z|h?IO?(ONB),Z=1,DOI:10.12677/pm.2023.1382292233n4)Z=YjZj,6=.w,h?E Hilbert m.,uzn 0,Zn=Znh?;K ONB?.n 2.1 3?k 0,3h 3k.fk:h h,vk kk=1 kZ=1(k)Zk,kZ=1 1(k)Zk,kk?f,k=k,k=k,1(k)N?f8?5.fk?fkO3 Bernoulli m?fO)f.2.1 3?O)fxk,kk0f Bernoulli D(.enLf Bernoulli D(v?;K?X(CAR).n 2.2 3?k,l N,Ke?kl=lk,kl=lk,kl=lk,k 6=lkk=kk=0,kk+kk=I.I mh?f.PNn=0,1,2,n,nLNn?8,Khn=span Z|nh?fm.N?yhn?2n+1.n 2.3 3?k 0,Kk=k+kh?gjf,Bernoulli?;Kj.5?0 k n,hnkk?Cfm,l?khn?f.n 2.4 eZ|n hn?IO?,K12(Z+Zk)|n,k hn?IO?.y.,n,k T,w,12(Z+Zk)hn,?6=,kh12(Z+Zk),12(Z+Zk)i=0,?=,kDOI:10.12677/pm.2023.1382292234n4)h12(Z+Zk),12(Z+Zk)i=12?Z+Zk,Z+Zk?=12?hZ,Zi+?Zk,Zk?=1.L12(Z+Zk)|n,k hn?IO?.?n 2.5 n,k ,khn?fkA?1,1,A?A?OZ+ZkZ Zk.y.k ,dk?,kk?Z+Zk?=(k+k)Z+(k+k)Zk=Zk+Z,k?Z Zk?=(k+k)Z(k+k)Zk=Zk Z=(Z Zk).L1 1 fk?A?,?Z+ZkZ ZkA?A?.?n 2.6 0 k n,t R,k+tI hn?gfkA?t 1,t+1.y.dn2.5?.5 5?0 k n,t 1,k+tI?kA?K,(fk+tI?g5,k+tI hn?f,?,hn?,af.3.f?e?,af vTr()=1,K f.3f,f?.3!,Bernoulli mu;Kj?f?f?9eZ5,d,kf?.3.1 1 f?Von Neumann?S()=Tr(log),(3.1)?f?S(|0)=Tr(log)Tr(log0),6=0.(3.2)p?2.?.e0?-?n.n 3.1?n,k ,t 1,kTr(k+tI2n+1(1+t)=1.=k+tI2n+1(1+t)hn?f.DOI:10.12677/pm.2023.1382292235n4)y.L?O,kTr(k+tI)=Xnh12?Z+Zk?,(k+tI)12?Z+Zk)i=Xnh12(Z+Zk),(1+t)12?Z+Zk)i=(1+t)Xnh12(Z+Zk),12?Z+Zk)i=2n+1(1+t).XTr(k+tI2n+1(1+t)=1.?e,B,k=k+tI2n+1(1+t)d:Kj(?f,w,kgf,e?nd:Kj(?f?Von Neumann?.n 3.2 k Nn,t 1,d:Kj(?f?Von Neumann?S(k)=n+1 12n+1Tr?logk+tI1+t?,?f?S(k|j)=12n+1Tr(logk+tIj+tI),k 6=j.y.Von Neumann?9fk?g5,kS(k)=Tr?k+tI2n+1(1+t)logk+tI2n+1(1+t)?=n+1+12n+1S?k+tI1+t?,S?k+tI1+t?=Tr?k+tI1+tlogk+tI1+t?=Xn?12?Z+Zk?,k+tI1+tlogk+tI1+t12?Z+Zk?=Xn?k+tI1+t12?Z+Zk?,logk+tI1+t12?Z+Zk?=Xn?12(Z+Zk),logk+tI1+t12?Z+Zk?=Tr?logk+tI1+t?.l?S(k)=n+1 12n+1Tr?logk+tI1+t?.uf?5N?yTr(klogk)=12n+1Tr(logk),Tr(klogj)=12n+1Tr(logj).DOI:10.12677/pm.2023.1382292236n4)l?S(k|j)=Tr(klogk)Tr(klogj)=12n+1Tr(logk)12n+1Tr(logj)=12n+1Tr(logkj)=12n+1Tr(logk+tIj+tI).?e?d:Kj(?f?Von Neumann?eZ5.n 3.2 n,k,j ,k 6=j,kS(kj)=12n+1(S(k)+S(j).y.Von Neumann?9,$?5,kS(kj)=Tr(kjlogkj)=Tr(jklogk)Tr(kjlogj)=Xn?12?Z+Zj?,jklogk12?Z+Zj?Xn?12?Z+Zk?,kjlogj12?Z+Zk?=Xn?j12?Z+Zj),klogk12?Z+Zj?Xn?k12?Z+Zk?,jlogj12?Z+Zk)?=12n+1Xn?12?Z+Zj?,klogk12?Z+Zj?12n+1Xn?12?Z+Zk?,jlogj12?Z+Zk?=12n+1(S(k)+S(j).?3.3 n,k,j ,k 6=j,kS(kj)S(k)+S(j).n 3.4 n,k,j ,k 6=j,XJ p+q=1,oS(pk+qj)pS(k)+qS(j).y.?(x)=xlogx,v(px+qy)p(x)+q(y),ep+q=1,d,DOI:10.12677/pm.2023.1382292237n4)kS(pk+qj)=Tr(pk+qj)logp(k+qj)=Tr(pk+qj)Trp(k)+q(j)=pS(k)+qS(j).?z1 Nielsen,M.A.and Chuang,I.L.(2000)Quantum Computation and Quantum Information.Cambridge University Press,Cambridge.2 Watrous,J.(2018)Theory of

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开