第44卷第2期2023年6月D0I:10.13340/j.jsmu.2023.02.009上海海事大学学报JournalofShanghaiMaritimeUniversityVol.44No.2Jun.2023文章编号:1672-9498(2023)02-0052-05GA-BP神经网络模型在集装箱船纵摇角度预测中的应用张婷1.2,2b,,王志明2m,2b,,王培良2a,2bh(1.山东交通职业学院航海学院,山东潍坊261206;2.上海海事大学a.商船学院;b.航运仿真技术教育部工程研究中心,上海201306)摘要:为研究集装箱船航行过程中的纵摇角度预测问题,采用遗传算法(geneticalgorithm,GA)对反向传播(backpropagation,BP)神经网络的初始权值和阈值进行优化,并对比分析优化效果。以集装箱船实际航行数据为基础,划分数据集,确定神经网络结构,并初始化GA参数;GA以适应度值为指标,选代搜索最优适应度值,确定BP神经网络参数;使用具有最优初始权值和阈值的BP神经网络进行纵摇角度预测,并结合均方误差(meansquareerror,MSE)和平均绝对百分比误差(meanabsolutepercentageerror,MAPE)对预测结果进行对比分析。结果表明:所提模型具有较高的预测能力,预测结果的MSE和MPAE分别为0.7192和0.0082,预测结果较为准确。关键词:遗传算法(GA);反向传播神经网络;船舶纵摇预测;集装箱船中图分类号:U674.13*1;U661.32*1文献标志码:AApplicationofGA-BPneuralnetworkmodelinpitchanglepredictionofcontainershipsZHANGTing'gl,2a,2b,WANGZhiming?g2a,2b,WANGPeiliang,2a,2b(1.Navigationcollege,ShandongTransportVocationalCollege,Weifang261206,Shandong,China;2.a.MerchantMarineCollege;b.EngineeringResearchCenterofShippingSimulationofMinistryofEducation,ShanghaiMaritimeUniversity,Shanghai201306,China)Abstract:Inordertostudytheissueofpredictingthepitchangleduringthenavigationofcontainerships,thegeneticalgorithm(GA)isusedtooptimizetheinitialweightsandthresholdsofthebackpropagation(BP)neuralnetwork,andtheoptimizationeffectsarecompared.Basedontheactualnavigationdataofcontainerships,thedatasetisdivided,theneuralnetworkstructureisdetermined,andtheGAparametersareinitialized.TheGAusesthefitnessvalueasanindicator,andthroughiterativesearchtheoptimalfitnessvalueisobtainedtodeterminetheBPneuralnetworkparameters.TheBPneuralnetworkwithoptimalinitialweightsandthresholdsisusedforpitchanglepredict...