第46卷第1期2023年3月南京师大学报(自然科学版)JOURNALOFNANJINGNORMALUNIVERSITY(NaturalScienceEdition)Vol.46No.1Mar,2023收稿日期:2022-09-03.基金项目:国家自然科学基金项目(41971343).通讯作者:吉根林,博士,教授,研究方向:大数据分析与挖掘技术.E⁃mail:glji@njnu.edu.cndoi:10.3969/j.issn.1001-4616.2023.01.015双交叉注意力自编码器改进视频异常检测戚小莎1,曾静2,吉根林2(1.南京师范大学数学科学学院,江苏南京210023)(2.南京师范大学计算机与电子信息/人工智能学院,江苏南京210023)[摘要]针对视频中包含的异常事件数量稀少,信息密集的特征容易被遗漏等问题,本文提出一种双交叉注意力自编码器的视频异常事件检测方法.首先预处理视频集,提取视频帧中表观和运动特征,然后设计双交叉注意力模块融入自编码器中,使特征图在自编码器中能够更好地关联全局特征.其次将提取后的特征放入各自的自编码器中学习正常行为,使含有正常事件的视频帧能被模型重构,含有异常事件的视频帧则无法被重构.最后通过检测模型得到各个视频帧的重构误差从而进行异常事件判定.该方法可以以局部特征关联全局特征的方式有效提高视频异常事件检测的准确率,通过在多个公开数据集中进行实验验证,证明该方法优于其他同类方法.[关键词]异常检测,自编码器,帧,重构,深度学习,神经网络,特征提取,融合[中图分类号]TP391[文献标志码]A[文章编号]1001-4616(2023)01-0110-10ImprovedVideoAnomalyDetectionwithDualCriss⁃CrossAttentionAutoEncoderQiXiaosha1,ZengJing2,JiGenlin2(1.SchoolofMathematicalSciences,NanjingNormalUniversity,Nanjing210023,China)(2.SchoolofComputerandElectronicInformation/ArtificialIntelligence,NanjingNormalUniversity,Nanjing210023,China)Abstra...