分享
数字孪生城市框架与发展建议_张竞涛.pdf
下载文档

ID:2737728

大小:558.45KB

页数:10页

格式:PDF

时间:2023-10-13

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
数字 孪生 城市 框架 发展 建议 张竞涛
数字孪生城市框架与发展建议张竞涛1陈才1崔颖1张育雄1韩鹏1孟楠1徐亚敏2(1.中国信息通信研究院产业与规划研究所,北京 100037;2.世界经济论坛物联网和城市转型平台,北京 100020)摘要:数字孪生城市已成为智慧城市发展的新高度、新方向和新路径。结合数字孪生技术理论和数字孪生城市建设实践,进一步明确数字孪生城市的概念内涵、四大技术特征、三大发展愿景、九大发展要素,提出了“4+5”数字孪生城市要素框架,分析了当前数字孪生城市理性认识仍需加强、数据治理仍需提升、可持续商业模式仍需探索的三大挑战,并分别提出政府侧和产业侧发展数字孪生城市的策略建议。关键词:信息化;数字孪生;数字孪生城市;智慧城市;数字化转型中图分类号:TP39文献标志码:A引用格式:张竞涛,陈才,崔颖,等.数字孪生城市框架与发展建议 J 信息通信技术与政策,2022,48(12):2-11.DOI:10.12267/j.issn.2096-5931.2022.12.0010引言城市可持续发展目标的实现既依赖数字技术的创新与赋能,也需要政策支持与机制变革。数字孪生城市(Digital Twin City)是物联感知、三维建模、数据分析、模拟仿真等技术在城市领域的集成应用,将有效促进技术集成创新,驱动城市运行机制优化,推动城市产业增速、管理增智、服务增效发展,从而助力城市可持续发展目标的实现。当前,数字孪生城市仍处于初期探索阶段,面临相关利益方理性认识不足、平台模型标准化滞后、技术尚不成熟、商业模式不清晰等挑战,亟需明确数字孪生城市概念和要素框架,为设计方、建设方、实施方等主体共同探索数字孪生城市可持续发展路径提供参考。1数字孪生城市的概念与价值1.1数字孪生城市的内涵逐渐清晰2002 年,数字孪生概念被首次提出,随后数字孪生相关概念不断迭代完善。2017 年,“数字孪生城市”概念被首次提出,随后被政府侧、产业侧广泛认可(见表 1)。2002 年,“信息镜像模型”概念被首次提出,数字孪生概念初具雏形。Michael Grieves 在美国密歇根大学任教时首次提出“镜像空间模型(Mirrored SpacesModel)”概念,并于 2006 年发表著作明确提出“信息镜像模型”的定义,即在虚拟空间构建一套数字模型,数字模型可以与物理实体进行交互映射1。2012 年,“数字孪生与数字孪生体”定义被首次明确,之后在工业中得到应用。美国国家航天局兰利研究中心 E.H.Glaessgen 和阿灵顿空军研究室 D.S.Stargel 受美国航空航天局阿波罗计划启发,首次明确了数字孪生和数字孪生体的定义,提出数字孪生是融合物理模型、传感器、运行轨迹等数据,通过虚拟空间的镜像模型反映呈现物理实体的整个生命周期2。2017 年,中国信息通信研究院首次提出“数字孪生城市”概念,即通过数据标识、物联感知、网络连接、2表 1数字孪生城市相关概念的演进时间/年提出者概念核心观点2002美国密歇根大学信息镜像模型信息镜像模型即在虚拟空间构建一套数字模型,数字模型可以与物理实体进行交互映射2012美国 国 家 航 空航天局数字孪生和数字孪生体数字孪生是融合物理模型、传感器、运行轨迹等数据,通过虚拟空间的镜像模型反映呈现物理实体的整个生命周期2017中国 信 息 通 信研究院数字孪生城市数字孪生城市是通过数据标识、物联感知、网络连接、智能控制等技术,在数字空间再造一个与物理城市一一映射的数字城市,推动城市全要素数字化、全状态实时化,实现物理城市与数字城市平行运转、协同交互2017佐治亚理工学院智慧城市数字孪生体智慧城市数字孪生体是一个由城市虚拟模型、物联网络、多维数据和分析计算技术组成的智能自适应的系统,可用于复制、模拟和预测城市运行的变化,促进城市的韧性发展和可持续发展2018北京 航 空 航 天大学陶飞数 字 孪 生 五 维模型物理实体、虚拟模型、服务、孪生数据和连接构成了数字孪生的五维模型2020清华大学数字孪生城市三要素数字孪生城市三要素是数据、模型和服务智能控制等技术,在数字空间再造一个与物理城市一一映射的数字城市,推动城市全要素数字化、全状态实时化,实 现 物 理 城 市 与 数 字 城 市 平 行 运 转、协 同交互3。2017 年,佐治亚理工学院提出“智慧城市数字孪生体”概念,智慧城市数字孪生体是一个由城市虚拟模型、物联网络、多维数据和分析计算技术组成的智能自适应的系统,可用于复制、模拟和预测城市运行的变化,促进城市的韧性发展和可持续发展4。2018 年,北京航空航天大学陶飞教授初步提出并构建“数字孪生五维模型”。物理实体、虚拟模型、服务、孪生数据和连接构成了数字孪生的五维模型5。2019 年之后,“数字孪生城市”理念得到政产学研界广泛认可和推广。2020 年,清华大学杜明芳教授研究提出,数字孪生城市三要素是数据、模型和服务,各类城市业务系统数据、物联网感知数据、城市三维模型数据通过有序组合形成了城市的数字孪生体6。综上所述,本文研究认为,数字孪生城市是通过物联网、人工智能、三维建模等数字化技术,将物理空间的城市映射到数字空间,通过实时感知、分析研判、监测预警、辅助决策和远程操控,解决城市规划、设计、建设、运营、管理、服务全过程中的复杂性和不确定性问题,全面提高城市治理效率和服务质量,实现物理城市和数字城市并行运转、虚实互动的城市发展新形态。数字孪生城市的运行机理包含以下环节。首先,通过物联感知、信息建模、泛在网络等技术采集交通、生态环境、城市运行等实时数据,实现由实入虚的连接与映射;其次,基于城市运行规律知识图谱和大数据分析算法,在数字空间进行分析洞察发现问题,并制定供城市管理者参考的科学合理的决策依据;最后,通过物联网远程控制和交互界面作用于现实城市,实现以虚控实,最终实现对物理城市的全生命周期管理服务、城市运行优化改进和经济可持续性发展(见图 1)。图 1数字孪生城市的运行机理31.2数字孪生城市的四大技术特征研究认为,数字孪生城市具备四大典型技术特征,即精准映射、分析洞察、虚实融合和智能干预(见图2)。图 2数字孪生城市的四大技术特征一是物理城市与数字城市的精准映射,是指通过运用物联网(Internet of Things,IoT)、地理信息系统(Geographic Information System,GIS)、建筑信息模型(Building Information Modeling,BIM)、人工智能、大数据等技术,数字孪生城市可以实现多维度数据汇聚,从而分尺度、分实体构建城市数字孪生体,既包括城市建筑、城市部件、道路等静态实体,也包含人流、车流、物流等各类动态实体。二是数字城市的分析洞察,是指在数字空间中,基于物理城市采集的空间地理、物联感知、城市运行等数据,可以通过数据挖掘、智能分析洞察城市运行状态和风险,辅助城市决策,改善城市运行状态。三是数字城市与物理城市的虚实融合,是指物理城市在数字空间中得以延展、扩大,例如城市规划方案动态比选、增强现实服务等。四是数字城市对物理城市的智能干预,是指面对事故、灾害、舆情等情况,数字孪生城市平台将辅助城市管理者敏捷响应、快速决策部署;也可以通过深度学习、仿真推演预测城市问题或风险,预防事件减轻灾害,从而降低城市财产损失,保障人民安全。1.3数字孪生城市的三大愿景在数字空间,城市实体可以自由编辑以改善布局,城市决策可以被图形化推演以展现效果,城市设备可以被远程控制以快速干预,城市问题与风险可以被提前洞察以快速应对,从而助力实现数字孪生城市的三大愿景 城市生产集约高效、城市生活宜居便捷、城市生态绿色可持续发展。城市生产集约高效。数字孪生技术有助于对要素配置、加工、流通等关键环节进行智能化分析,助力建筑、制造、物流、贸易等行业降本增效。同时,数字孪生城市模型可作为云服务供政府、企业和市民使用,城市规划者便捷地开展数字化设计,城市建设者实现远程调度资源、监控进度,城市管理者实时感知、推演决策效果,有效提高城市运行效率,形成更加集约高效的发展模式。城市生活宜居便捷。数字孪生技术用于城市交通信号优化7、应急预案优化、人员疏散路线改进等场景,改善城市交通拥堵、事件响应滞后等问题,提高市民生活的安全感;开展虚实互动课堂、元宇宙景区等应用,丰富市民文娱生活体验,提高市民生活的幸福感。以数字化、远程化方式,提高公共服务的覆盖面和均等化水平,提升城市服务包容性。城市生态绿色可持续发展。数字孪生城市平台将实时感知空气质量、温室气体排放等情况,辅助城市管理者有效制定生态保护政策;城市规划者和管理者可以在数字空间立体化、三维化评估多个城市规划方案,4优化城市生态布局。同时,数字孪生将推动能源设施精细化运维、数字化能源管理、碳轨迹追踪、碳中和路径推演,降低城市能源成本,助力城市实现碳中和。2数字孪生城市的要素框架2.1数字孪生城市要素架构基于数字孪生城市建设实际,研究认为,数字孪生城市建设涵盖九大要素,构成“4+5”的要素框架(见图 3)。四大内部要素分别是基础设施、数据资源、平台能力和应用场景,内部要素为数字孪生城市提供内生创新动力。五大外部要素分别是战略与机制、利益相关方、资金与商业模式、标准与评估和网络安全,外部要素为数字孪生城市提供发展环境和外部支撑(见图 4)。图 3数字孪生城市要素框架图 4数字孪生城市要素视图52.2数字孪生城市内部核心要素2.2.1基础设施“感联算融”基础设施体系构成数字孪生城市的数字底座。“感”是指各类物联感知设施和城市级物联网平台,感知设施是洞察城市运行状况的触手,也为城市部件远程控制提供了入口。“联”是指 5G网络、窄带泛在感知网、全光网络等网络设施,为万物互联提供高速数据通道。“算”包含数据存储设施和数据计算设施,其中多级数据存储中心、云数据中心等数据存储设施满足全域全量数据存储的需要;高性能计算、人工智能计算、分布式计算、边缘计算等算力设施,为数字孪生城市提供高效可靠的算力保障。“融”是指数字孪生城市模型、智慧杆柱、车联网、能源互联网等融合基础设施,促进传统设施智能化改造,为数字孪生城市多场景应用提供支撑。2.2.2数据资源全时全量的数据资源是城市数字孪生体的关键构成。一方面,数据采集设备和能力持续升级,目前通过倾斜摄影、激光扫描自动获取地理数据,通过深度学习等人工智能技术自动提取三维数据,实现高效率、自动化搭建城市数字孪生模型,逐步实现全息测绘。另一方面,丰富的数据资源将支撑复杂场景决策,数字孪生城市汇聚了 GIS、BIM、倾斜摄影、激光点云等时空数据,城市各类物联网数据,建筑物、桥梁、道路、市政等传统基础设施数据,形成支撑城市管理与服务的时空知识图谱。2.2.3平台能力统一集成的城市级平台是数字孪生城市的能力载体。城市级平台是数字孪生城市承上启下的核心枢纽,平台向下连接感知设施、算力设施等各类基础设施,汇聚城市静态数据、动态数据等多种数据资源;平台向上为各类应用开发提供了集约建设、能力共享的开发平台,将帮助政府部门和企业降低孪生应用的开发成本和开发周期,最大化实现底座平台的复用能力和数据共享,同时,平台提供了感知操控、全要素数字化表达、可视化呈现、时空计算、数据融合、推演仿真、自学习自优化、虚实互动、众创拓展等九大能力,为各类孪生应用开发运行和迭代升级提供能力支持。2.2.4应用场景应用场景是数字孪生城市的创新热点和价值体现。研究认为,当前数字孪生技术将在“高难度”“高危险”“高价值”三大类场景中发挥价值。一是“高难度”场景,如燃气管网管理、地下水保护等人力难及、不易观测的地下空间场景,发挥数字孪生物联感知操控、三维可视化呈现的能力优势,将实现对地下空间的感知监测、动态预警和智能控制。二是“高危险”场景,如地陷、爆炸、火灾、内涝等灾害应急预演场景,发挥数字孪生模拟仿真推演能力优势,在数字空间实现低成本、数字化的应急预案演练、人群疏导演练、救援场景模拟,强化城市应急救援和安全保障能力。三是“高价值”场景,如城市布局规划、区域碳中和推演、城市更新成本分析、产业项目选址分析等场景,将为城市建设

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开