碳纤维
增强
超高温
陶瓷
复合
多相
反应
制备
抗烧蚀
性能
孙倩
第 23 卷第 2 期2023年 2月过 程 工 程 学 报The Chinese Journal of Process EngineeringVol.23 No.2Feb.2023Multiphase reaction fabrication and ablation resistance of carbon fiber-reinforced ultra-high temperature ceramic matrix compositesQian SUN1,2,Huifeng ZHANG1,3,Chuanbing HUANG1,3,Shouquan YU1,3,Shirui YANG4,Shige FANG4,Weigang ZHANG1,2,3*1.Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China2.School of Chemical Engineering,University of Chinese Academy of Sciences,Beijing 100049,China3.Ganjiang Innovation Academy,Chinese Academy of Sciences,Ganzhou,Jiangxi 341119,China4.Beijing Power Machinery Institute,Beijing 100074,ChinaAbstract:In this work,to improve the ablation resistance and oxidation performance of carbon fiber-reinforced carbon matrix(C/C)composites widely applied as aerospace high-temperature structural materials in an oxidizing environment above 2000,C/C-SiC-ZrB2-ZrC composites were fabricated by hybrid processes of ZrB2 slurry impregnation,ZrC-SiC precursor infiltration-pyrolysis and reactive melt infiltration with a Si-Zr10 eutectic alloy.The matrix microstructure and the evolution mechanism of the prepared composites were investigated in detail by phase composition,microstructure analysis,model experiments,and thermodynamic calculation.The mechanical properties and ablation resistance of the composites were tested by three-point bending tests and an atmospheric plasma torch,respectively.The results showed that in the cooling stage after infiltration,in situ solid-liquid reaction between ZrC ceramics and residual Si melt resulted in the formation of ZrSi2 and SiC,characterizing as such submicron SiC particles evenly embedded in the ZrC-ZrSi2 binary phases and finally generated a ZrC-ZrSi2-SiC complex micro-region.The obtained composites with a density of 3.18 g/cm3 and an open porosity of 2.77%showed a flexural strength of 121.4613.77 MPa and a flexural modulus of 21.785.56 GPa.Moreover,numerous fibers were pulled out and obvious interfacial debonding was observed in the fracture section,indicating that the failure mode of the composites was a ductile fracture.After plasma-arc ablation at 2000 for 300 s,the C/C-SiC-ZrB2-ZrC composites exhibited excellent ultra-high temperature ablation behavior.The mass and linear ablation rates were 1.3710-3 g/s and 3.4310-3 mm/s,respectively.It was found that a unique double-layer oxide structure was formed in the ablation center.The ZrO2 layer as the inner layer can inhibit heat conduction into the internal matrix to further improve the high-temperature resistance of the composites.The composite oxide layer composed of solid-phase ZrO2 particles and liquid-phase SiO2-ZrO2 melt rich in SiO2 as the outer layer can not only resist mechanical scouring of high-speed gas flow but also inhibit the inward oxygen diffusion.Key words:carbon fibers;ceramic matrix;hybrid processes;microstructure;mechanical properties;ablation resistanceRMI with Si-Zr1010 mCfPyCC/C-ZrB2-ZrC-SiC preformsC/C-SiC-ZrB2-ZrC composites10 mFiber pulled-outInterfacial debondingAblation resistanceMechanical properties15 mZrO2SiO2-ZrO2 melt10 m10 mContinuous SiCZrB2SiC particlesZrSi2研究论文DOI:10.12034/j.issn.1009-606X.222017收稿:2022-01-10,修回:2022-04-13,网络发表:2022-04-20;Received:2022-01-10,Revised:2022-04-13,Published online:2022-04-20基金项目:中国科学院绿色过程制造创新研究院项目(编号:IAGM2020C22);中国科学院赣江创新研究院自主部署项目(编号:E155D001)作者简介:孙倩,硕士研究生,材料工程专业,E-mail:;通讯联系人,张伟刚,研究员,研究方向为涂层与高温复合材料,E-mail:引用格式引用格式:孙倩,张会丰,黄传兵,等.碳纤维增强超高温陶瓷基复合材料的多相反应制备与抗烧蚀性能.过程工程学报,2023,23(2):291300.Sun Q,Zhang H F,Huang C B,et al.Multiphase reaction fabrication and ablation resistance of carbon fiber-reinforced ultra-high temperature ceramic matrix composites(in Chinese).Chin.J.Process Eng.,2023,23(2):291300,DOI:10.12034/j.issn.1009-606X.222017.过 程 工 程 学 报第 23 卷 碳纤维增强超高温陶瓷基复合材料的多相反应制备与抗烧蚀性能孙 倩1,2,张会丰1,3,黄传兵1,3,于守泉1,3,杨诗瑞4,房师阁4,张伟刚1,2,3*1.中国科学院过程工程研究所,北京 1001902.中国科学院大学化学工程学院,北京 1000493.中国科学院赣江创新研究院,江西 赣州 3411194.北京动力机械研究所,北京 100074摘要:为提高C/C复合材料在2000以上有氧环境中的抗氧化烧蚀性能,本研究采用ZrB2浆料浸渍、ZrC-SiC前驱体浸渍裂解与Si-Zr10共晶合金反应熔渗复合工艺制备了C/C-SiC-ZrB2-ZrC复合材料,细致研究了复合材料在熔渗过程中的基体微观结构演变机理及其力学性能和抗烧蚀性能。结果表明,在反应熔渗结束后的降温阶段,部分ZrC陶瓷与残余Si熔体通过原位固-液反应转化为ZrSi2和SiC,生成的亚微米级SiC颗粒均匀镶嵌于ZrC-ZrSi2二元混合物中,最终形成ZrC-ZrSi2-SiC三相混合微区。制备的C/C-SiC-ZrB2-ZrC复合材料密度为3.18 g/cm3,开孔率为2.77%,其弯曲强度和弯曲模量分别为121.4613.77 MPa和21.785.56 GPa。在其断口处能观察到较长且较多的单丝纤维拔出以及明显的界面脱黏,这表明复合材料的失效方式为韧性断裂。经2000,300 s的大气等离子体烧蚀,复合材料表现出优良的抗超高温烧蚀性能(质量烧蚀率和线烧蚀率分别为1.3710-3 g/s和3.4310-3 mm/s)。分析发现,烧蚀中心形成了独特的双层梯度氧化物结构,底部的ZrO2层可阻挡外部热量向材料内部基体的传递,表面由固相ZrO2颗粒和液相富SiO2的SiO2-ZrO2熔体组成的复合氧化层既能抵御高速气流的机械冲刷,又能抑制氧气向内部基体的扩散。关键词:碳纤维;陶瓷基;复合工艺;微观结构;力学性能;抗烧蚀性能中图分类号:TB332 文献标识码:A 文章编号:1009-606X(2023)020291101 前 言 C/C复合材料具有密度低(1.82.0 g/cm3)、热膨胀系数低(CTE,210-6410-6/K)、热导率高20150 W/(mK)并且力学性能和抗热震性能优异等优点,在航空航天领域获得了广泛应用1,2。但 C/C 复合材料在高于600的有氧环境中氧化迅速,极大地限制了其在临近空间飞行器中的应用范围和工作寿命3。目前,为提高C/C复合材料在2000以上有氧环境中的抗氧化烧蚀性能,通常将SiC陶瓷与超高温陶瓷(ZrB2,ZrC,HfB2及HfC等)同时引入碳基体,形成碳纤维增强超高温陶瓷基复合材料4。相较于前驱体浸渍裂解、化学气相渗透和浆料浸渍等基体改性工艺,反应熔渗工艺具有致密化效率高、成本低、预制体形状要求低等优势,因此在近年来获得了快速发展5,6。研究表明,向多孔C/C或C/