一种可解释的自由文本击键事件序列分类模型张畅*韩继红张玉臣李福林(信息工程大学郑州450000)摘要:TypeNet是一种基于两层长短时记忆网(LSTM)分支结构的孪生网络模型,在自由文本击键事件序列分类任务上取得了很好的效果,但缺乏可解释性。为此,该文改进了TypeNet模型,提出一种基于单层LSTM分支结构的孪生网络模型TypeNetII。TypeNetII模型用多层感知机度量两个分支输出表征向量差的绝对值体现的特征序列的相似度。模型训练完毕后,用多元二项式回归模拟多层感知机部分,基于得到的多元二项式对模型进行解释。实验结果表明,TypeNetII模型的分类效果超出了已有的TypeNet模型,多元二项式回归的结果具有泛化性,表征向量差的绝对值与相似度量之间存在非线性关系。关键词:孪生网络;长短时记忆网;击键;多层感知机;可解释性中图分类号:TP181文献标识码:A文章编号:1009-5896(2023)02-0698-09DOI:10.11999/JEIT211567AnInterpretableFree-textKeystrokeEventSequenceClassificationModelZHANGChangHANJihongZHANGYuchenLIFulin(InformationEngineeringUniversity,Zhengzhou450000,China)Abstract:TypeNetisaSiamesenetworkmodelbasedontwo-layerLong-ShortTermMemory(LSTM)branchstructure.Ithasachievedgoodresultsintheclassificationoffree-textkeystrokeeventsequences,butlacksinterpretation.Therefore,theTypeNetmodelistransformed,andaSiamesenetworkTypeNetIIbasedonasingle-layerLSTMbranchstructureisproposed.Amulti-layerperceptronisusedtomeasurethesimilarityoftwofeaturesequencesreflectedbytheabsolutevalueofthedifferencebetweentheoutputembeddingsofthetwobranches.Afterthemodeltraining,themulti-layerperceptronissimulatedbyamultivariatebinomialexpression.Basedontheobtainedmultivariatebinomialexpression,theclassificationjudgmentofthemodelcanbeexplained.TheexperimentalresultsshowthattheclassificationeffectoftheTypeNetIImodelexceedstheexistingTypeNetmodel.Theresultsofmultivariatebinomialregressionaregeneralized,andthereisanonlinearrelationshipbetweentheabsolutevalueofthedifferenceoftheembeddingsandthesimilaritymeasure.Keywords:Siamesenetwork;Long-ShortTermMemory(LSTM);Keystroke;Multi-layerperceptron;Interpretability1引言随着人工智能技术的飞速发展,人脸等生物特征在...