激光
纹理
调控
材料
表面
疏水
性能
研究进展
第 15 卷 第 4 期 精 密 成 形 工 程 2023 年 4 月 JOURNAL OF NETSHAPE FORMING ENGINEERING 153 收稿日期:20230213 Received:2023-02-13 基金项目:国家重点研发计划(2020YFB2010300);中央高校基本科研业务费专项资金(2021GCRC003)Fund:National Key R&D Program of China(2020YFB2010300);The Fundamental Research Funds for the Central Universities(2021GCRC003)作者简介:张茂(1989),男,博士,副教授,主要研究方向为材料表面工程。Biography:ZHANG Mao(1989-),Male,Doctor,Associate professor,Research focus:materials surface engineering.通讯作者:王新云(1973),男,博士,教授,主要研究方向为金属精密塑性成形。Corresponding author:WANG Xin-yun(1973-),Male,Doctor,Professor,Research focus:metal precision plastic forming.引文格式:张茂,易川云,杨化雨,等.激光纹理化调控材料表面疏水性能研究进展J.精密成形工程,2023,15(4):153-163.ZHANG Mao,YI Chuan-yun,YANG Hua-yu,et al.Research Progress on Hydrophobicity of Material Surfaces Regulated by Laser TexturingJ.Journal of Netshape Forming Engineering,2023,15(4):153-163.激光纹理化调控材料表面疏水性能研究进展 张茂1,易川云1,杨化雨1,张嘉城1,王新云1,王爱华1,周丹2,邓燕3,刘建春4(1.华中科技大学 a.材料科学与工程学院 b.材料成形与模具技术国家重点实验室,武汉 430074;2.武汉华工激光工程有限责任公司,武汉 430223;3.一汽模具制造有限公司,长春 130011;4.中国舰船研究设计中心,武汉 430064)摘要:超疏水表面由于具有减阻、抗污、防水等独特性能,广泛应用于日常生活、军事、工业等场景,材料表面的微纳结构及化学成分对其超疏水性能有着重要影响。激光纹理化技术由于具有加工分辨率高、加工方式灵活、可加工材料多等优势,可用于制备疏水性能精确可控的表面微纳结构,在制造超疏水表面方面有着广阔的应用前景。首先,介绍了激光纹理化的作用机理,综述了常用的激光纹理化方式,如激光直接写入法、激光干涉图案化法及激光诱导周期性结构法等,并介绍了激光参数对微纳结构的影响。根据表面微纳结构的形貌、周期及尺寸特点对激光纹理化制备的表面分层微纳结构进行了总结归纳,包括覆盖随机纳米结构或激光诱导周期性结构的微沟槽、微网格、微柱及微峰,重点介绍了分层微纳结构的制备方式及微纳结构对疏水性的影响。总结了提高分层微纳结构表面疏水性的后处理方式,包括环境老化、表面化学改性及热处理等,并介绍了后处理方式调控疏水性的作用机理。最后,对采用激光纹理化技术制备超疏水表面的应用前景进行了展望。关键词:超疏水表面;微纳制造;激光纹理化;激光加工;接触角;表面工程 DOI:10.3969/j.issn.1674-6457.2023.04.017 中图分类号:TG176 文献标识码:A 文章编号:1674-6457(2023)04-0153-11 Research Progress on Hydrophobicity of Material Surfaces Regulated by Laser Texturing ZHANG Mao1,YI Chuan-yun1,YANG Hua-yu1,ZHANG Jia-cheng1,WANG Xin-yun1,WANG Ai-hua2,ZHOU Dan2,DENG Yan3,LIU Jian-chun4(1.a.School of Materials Science and Engineering,b.State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,Wuhan 430074,China;2.Wuhan Huagong Laser Engineering Co.,Ltd.,Wuhan 430223,China;3.Faw Mold Manufacturing Co.,Ltd.,Changchun 130011,China;4.China Ship Development and Design Center,Wuhan 430064,China)ABSTRACT:Superhydrophobic surfaces have a wide range of applications in daily life,military,and industry due to their 技术创新 154 精 密 成 形 工 程 2023 年 4 月 unique properties including resistance reduction,pollution prevention,waterproofing,etc.The micro-nano structures and chemical compositions of surfaces are important factors that affect their hydrophobicity.Since laser texturing technology has advantages of high processing resolution,flexible processing method,and a wide range of processable materials,it can be used to obtain micro-nano structure surfaces with precisely controllable hydrophobic properties.Thus,it has a wide prospect of ap-plication in the production of superhydrophobic surfaces.Firstly,the mechanism of laser texturing was introduced,and the commonly used laser texturing methods were reviewed,such as direct laser writing,laser interference patterning,and la-ser-induced periodic structures.Then,the effect of laser parameters on micro-nano structures was expounded.Based on the morphology,periodicity,and size characteristics of the micro-nano structures,the hierarchical micro-nano structures prepared on the surface by laser texturing were summarized and classified,including micro trench,micro matrix,micro pillars and micro spikes covered with random nanoscale structures or laser-induced periodic structures.The preparation methods of hierarchical micro-nano structures and their effect on hydrophobicity were set forth emphatically.Post-processing methods for improving the hydrophobicity of hierarchical micro-nano structures were summarized,including environmental aging,surface chemical modi-fication,and heat treatment,and the mechanism of hydrophobicity regulation by post-processing was introduced.Finally,the application prospects of using laser texturing technology to prepare superhydrophobic surfaces were discussed.KEY WORDS:superhydrophobic surfaces;micro-nano manufacturing;laser surface texturing;laser processing;contact angle;surface engineering 水滴在不同材料表面的状态引起了研究者们的广泛关注,如水滴在花瓣上发生吸附,却在荷叶上自由滚动1。造成水滴状态不同的原因是材料表面疏水性能的差异,研究者们利用接触角和滚动角来表征材料表面的疏水性能2。如图 1a 所示,在气、液、固三相交点处所做的气液界面切线与固液界面的夹角即为接触角,其范围为 0180。接触角越大,水滴越接近于球状,接触角小于 90的表面称为亲水表面,接触角大于 90的表面称为疏水表面。但仅仅通过接触角大小还不足以描述水滴在表面上轻易滑动的效果,为此,研究者们引入滚动角来进一步表征水滴在表面的状态。滚动角指的是液滴开始滚动时平台的倾斜角度,如图 1b 所示。滚动角越小,表明材料表面对水滴的吸附更弱,更容易在表面上发生滑动。图 1 水滴接触角与滚动角示意图 Fig.1 Schematic diagram of the contact angle and sliding angle of water droplets:a)schematic diagram of the contact angle;b)schematic diagram of the sliding angle 目前,通常将接触角150且滚动角10的表面称为超疏水表面,水滴在超疏水表面上的形状接近球状,且当表面倾斜时水滴能够轻易地滚动。超疏水表面由于其自清洁、防水、防冰及减阻等独特性能,在工程应用和日常生活中均应用广泛,比如具有更高效率的表面活性剂3、具备防水能力和自清洁能力的户外服装4、可防止冰雪在其表面凝结的输电线缆5、可以抑制血小板黏附的医用材料6等。然而,现有的超疏水表面制备工艺存在过程复杂、成本高昂等缺点,因此,如何高效率、低成本地获得结构稳定且性能优良的超疏水表面成为了大众关注的问题。前期研究发现,可以通过形成表面微纳结构和降低表面自由能来获得超疏水表面7。由于目前表面能最低的聚四氯乙烯与水的接触角也只有 120,因此,难以通过直接覆盖低表面能材料来获得超疏水表面8。以最常见的天然超疏水表面荷叶