基于优化多尺度排列熵和卷积神经网络的滚动轴承故障诊断方法伍济钢,文港*(湖南科技大学机械设备健康维护湖南省重点实验室,湘潭411201)摘要:针对滚动轴承故障分类中特征信号微弱、信号非线性和多尺度特征难提取的问题,提出基于优化多尺度排列熵(MPE)和卷积神经网络(CNN)的滚动轴承故障诊断方法:通过改进自适应噪声完备集合经验模式分解(ICEEMDAN)对轴承信号进行分解和重构,实现信号降噪;通过粒子群算法(PSO)对MPE进行优化,提出PSO-MPE特征提取方法,参数优化后的MPE能够提取更为关键的特征信息;将所得的排列熵输入到CNN中进行故障分类以及降维可视化分析。以凯斯西储大学开放轴承数据库样本为测试对象,将文章所提出的ICEEMDAN-PSO-MPE-CNN方法与ICEEMDAN-PSO-MPE-RNN、CEEMDAN-SVM、ICEEMDAN-PSO-MPE-SVM等方法进行纵向和横向对比分析,结果表明改进方法的分类准确率和效率更高,在T-SNE可视化下的分类效果更明显,能够实现滚动轴承故障的高精度和高效率检测。关键词:滚动轴承;故障诊断;多尺度排列熵;卷积神经网络;粒子群算法中图分类号:V231.92;TH133.33文献标志码:A文章编号:1673-1379(2023)01-0099-08DOI:10.12126/see.2022102Rollingbearingfaultdiagnosismethodbasedonoptimizedmulti-scalepermutationentropyandconvolutionalneuralnetworkWUJigang,WENGang*(HunanProvinceKeyLaboratoryofHealthMaintenanceEquipment,HunanUniversityofScienceandTechnology,Xiangtan411201,China)Abstract:Inviewofweakfeaturesignal,signalnonlinearityanddifficultextractionofmulti-scalefeaturesinrollingbearingfaultclassification,arollingbearingfaultdiagnosismethodbasedonoptimizedmulti-scalepermutationentropy(MPE)andconvolutionalneuralnetwork(CNN)wasproposed.Thedecompositionandreconstructionofbearingsignalsbyimprovingcompleteensembleempiricalmodedecompositionwithadaptivenoise(ICEEMDAN)couldachievethesignalnoisereduction.TheMPEwasoptimizedbyparticleswarmoptimization(PSO),thePSO-MPEfeatureextractionmethodwasproposed,andtheparameter-optimizedMPEcouldextractmorecriticalfeatureinformation.TheresultedpermutationentropywasinputintoCNNforfaultclassificationanddimensionalityreductionvisualizationanalysis.TheICEEMDAN-PSO-MPE-CNNmethodproposedinthispaperwasanalyzedandco...