分享
CNAS-GL05:2006 测量不确定度要求的实施指南.pdf
下载文档

ID:2697707

大小:185.56KB

页数:7页

格式:PDF

时间:2023-08-21

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
CNAS-GL05:2006 测量不确定度要求的实施指南 CNAS GL05 2006 测量 不确定 要求 实施 指南
CNASGL05测量不确定度要求的实施指南测量不确定度要求的实施指南Guidance on the Application of theRequirements for MeasurementUncertainty中国合格评定国家认可委员会中国合格评定国家认可委员会CNAS-GL05:2006第 1 页共 6 页2006 年 06 月 01 日发布2007 年 04 月 16 日第 1 次修订2007 年 04 月 30 日实施测量不确定度测量不确定度要求的要求的实施指南实施指南1目的与范围目的与范围1.1 本指南是根据 CNAS CL01:2006 检测和校准实验室能力认可准则(等同采用 ISOIEC17025:2005)对检测和校准实验室有关测量不确定度的要求、中国合格评定国家认可委员会制订的测量不确定度评估和报告通用要求和国际上有关应用指南制订的,是测量不确定度评估和报告通用要求在检测和校准实验室具体应用的实施指南。1.2 本指南适用于申请认可的检测和校准实验室建立测量不确定度评估程序,也可供认可评审员在评审过程中使用。2引用文件引用文件下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。2.1 Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.测量不确定度表示指南2.2 International Vocabulary of Basic and General Terms in Metrology(VIM).BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.国际通用计量学基本术语2.3JJF1001-1998通用计量术语和定义2.4JJF 1059-1999测量不确定度评定和表示2.5CNAS CL01检测和校准实验室能力认可准则3.检测和校准实验室不确定度评估的基本步骤检测和校准实验室不确定度评估的基本步骤3.1 识别不确定度来源3.1.1 对检测和校准结果测量不确定度来源的识别应从分析测量过程入手,即对测量方法、测量系统和测量程序作详细研究,为此应尽可能画出测量系统原理或测量方法的方框图和测量流程图。CNAS-GL05:2006第 2 页共 6 页2006 年 06 月 01 日发布2007 年 04 月 16 日第 1 次修订2007 年 04 月 30 日实施3.1.2 检测和校准结果不确定度可能来自:对被测量的定义不完善;实现被测量的定义的方法不理想;取样的代表性不够,即被测量的样本不能代表所定义的被测量;对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善;对模拟仪器的读数存在人为偏移;测量仪器的分辨力或鉴别力不够;赋予计量标准的值或标准物质的值不准;引用于数据计算的常量和其它参量不准;测量方法和测量程序的近似性和假定性;在表面上看来完全相同的条件下,被测量重复观测值的变化。3.1.3 有些不确定度来源可能无法从上述分析中发现,只能通过实验室间比对或采用不同的测量程序才能识别。3.1.4 在某些检测领域,特别是化学样品分析,不确定度来源不易识别和量化。测量不确定度只与特定的检测方法有关。3.2 建立测量过程的模型,即被测量与各输入量之间的函数关系。若Y的测量结果为y,输入量Xi的估计值为iX,则).,(21nxxxfy 3.2.1 在建立模型时要注意有一些潜在的不确定度来源不能明显地呈现在上述函数关系中,它们对测量结果本身有影响,但由于缺乏必要的信息无法写出它们与被测量的函数关系,因此在具体测量时无法定量地计算出它对测量结果影响的大小,在计算公式中只能将其忽略而作为不确定度处理。当然,模型中应包括这些来源,对这些来源在数学模型中可以将其作为被测量与输入量之间的函数关系的修正因子(其最佳值为 0),或修正系数(其最佳值为1)处理。3.2.2 此外,对检测和校准实验室有些特殊不确定度来源,如取样、预处理、方法偏离、测试条件的变化以及样品类型的改变等也应考虑在模型中。3.2.3 在识别不确定度来源后,对不确定度各个分量作一个预估算是必要的,对那些比最大分量的三分之一还小的分量不必仔细评估(除非这种分量数目较多)。通常只需对其估计一个上限即可,重点应放在识别并仔细评估那些重要的分量特别是占支配地位的分量上,对难于写出上述数学模型的检测量,对各个分量作预估算更为重要。3.3 逐项评估标准不确定度3.3.1A 类评估 对观测列进行统计分析所作的评估a)对输入量 XI进行 n次独立的等精度测量,得到的测量结果为:CNAS-GL05:2006第 3 页共 6 页2006 年 06 月 01 日发布2007 年 04 月 16 日第 1 次修订2007 年 04 月 30 日实施X1、X2 Xnx为其算术平均值。即niixnx11单次测量结果的实验标准差为:niiiixxnxSxu12)(11)()(观测列平均值即估计值的标准不确定度为:nxSxSxui)()()(b)测量不确定度的 A 类评估一般是采取对用以日常开展检测和校准的测试系统和具有代表性的样品预先评估的。除非进行非常规检测和校准,对常规检测和校准的 A 类评估,如果测量系统稳定,又在 B 类评估中考虑了仪器的漂移和环境条件的影响,完全可以采用预先评估的结果,这时如提供用户的测量结果是单次测量获得的,A 类分量可用预先评估获得的 u(xi),如提供用户的是两次或三次或 n 次测得值的平均值,则 A 类分量可用mxSxSxui)()()(获得。其中 m 分别取m=2,m=3 和 m=nc)为作 A 类评估,重复测量次数应足够多,但有些样品只能承受一次检测或随着检测次数的增加其参数逐次变化,根本不能作 A类评估。有些检测和校准则因难度较大费用太高不宜作多次重复测量,这时由上式算得的标准差有可能被严重低估,这时应采用基于 t分布确定的包含因子。即用ktT)(95.0(其中n-1)作安全因子乘 uA=u(xi)后再和B 类分量合成。3.3.2 B 类评估 当输入量的估计量 Xi不是由重复观测得到时,其标准偏差可用对 Xi的有关信息或资料来评估。B 类评估的信息来源可来自:校准证书、检定证书、生产厂的说明书、检测依据的标准、引用手册的参考数据、以前测量的数据、相关材料特性的知识等。3.3.2.1 若资料(如校准证书)给出了xi的扩展不确定度 U(xi)和包含因子 k,则 xi的标准不确定度为:CNAS-GL05:2006第 4 页共 6 页2006 年 06 月 01 日发布2007 年 04 月 16 日第 1 次修订2007 年 04 月 30 日实施kxUxuuijB)()(这里有几种可能的情况:a)若资料只给出了 U,没有具体指明 k,则可以认为 k=2(对应约 95%的置信概率)b)若资料只给出了 UP(xi)(其中 p 为置信概率),则包含因子 kP与 xi的的分布有关,此时除非另有说明一般按照正态分布考虑,对应p0.95,k 可以查表得到,即kP1.960c)若资料给出了 UP及eff,则kP可查表得到,即 kPtP(eff)3.3.2.2 若由资料查得或判断 xi的可能值分布区间半宽度与 a(通常为允许误差限的绝对值)则:kaxuujB)(此时 k 与 xi在此区间内的概率分布有关(参见 JJF1059 附录 B“概率分布情况的估计”)对应几种非正态分布其包含因子为:分布两点反正弦矩形梯形三角k12321/6其中为上下底边之比值63.3.3 标准不确定度分量的计算输入量的标准不确定度 u(xi)引起的对 y 的标准不确定度分量 ui(y)为:)()(iiixuxfyu在数值上,灵敏系数ijxfC(也称为不确定度传播系数)等於输入量 Xi变化单位量时引起 y 的变化量。灵敏系数可以由数学模型对 Xi求偏导数得到,也可以由实验测量得到。灵敏系数反映了该输入量的标准不确定度对输出量的不确定度的贡献的灵敏程度,而且标准不确定度 u(xi)只有乘了该灵敏系数才能构成一个不确定度分量,即和输出量有相同的单位。3.4 合成不确定度 Uc(y)的计算CNAS-GL05:2006第 5 页共 6 页2006 年 06 月 01 日发布2007 年 04 月 16 日第 1 次修订2007 年 04 月 30 日实施)()(),(2)()()(111212jijininijjiiniicxuxuxxrxfxfxuxfyu3.4.1 实际工作中,若各输入量之间均不相关,或有部分输入量相关,但其相关系数较小(弱相关)而近似为 r(xi,xj)=0,于是便可化简为:)()()(212iniicxuxfyu当1ixf,则可进一步简化为:niicxuyu12)()(此即计算合成不确定度一般采用的方和根法,即将各个标准不确定度分量平方后求其和再开根。3.4.2 对大部分检测工作(除涉及航天、航空、兴奋剂检测等特殊领域中要求较高的场合外),只要无明显证据证明某几个分量有强相关时,均可按不相关处理,如发现分量间存在强相关,如采用相同仪器测量的量之间,则尽可能改用不同仪器分别测量这些量使其不相关。3.4.3 如证实某些分量之间存在强相关,则首先判断其相关性是正相关还是负相关,并分别取相关系数为1或1,然后将这些相关分量算术相加后得到一个“净”分量,再将它与其他独立无关分量用方和根法求得uc(y)。3.4.4 如发现各分量中有一个分量占支配地位时(该分量大于其次那个分量三倍以上),合成不确定度就决定于该分量。3.4.5 不确定度分量汇总输入量 Xi估计值Xi置信区间半宽度 a或扩展不确定 U概率分布除数(k)Ciui(y)i或eff输入量y3.5 扩展不确定度 U 的计算3.5.1 在大多数给第三方用户出具的检测和校准结果中必须同时给出特定置信水平下的扩CNAS-GL05:2006第 6 页共 6 页2006 年 06 月 01 日发布2007 年 04 月 16 日第 1 次修订2007 年 04 月 30 日实施展不确定度,据此告知用户检测和校准结果就在以报告值为中心的置信区间内扩展不确定度由合成不确定度乘以适当的包含因子 k 得到,在不确定度分量较多而且其大小也比较接近时,可以估计为正态分布,这时,k2就决定了具有 95置信水平的区间,即 U2uc(y)对应95的置信水平。3.5.2 如果合成不确定度包含的分量中缺少足够数量清楚知道其概率分布(如正态、矩形分布)的分量或包含一项占支配地位的分量,这时合成不确定度的概率分布就不能估计为正态分布,而是接近于其他分布,这时就不能按 3.5.1 中的方法来计算 U了,例如合成不确定度中占支配地位的分量的概率分布为矩形分布,这时包含因子应取为 k1.65 即 U1.65uc(y)才对应95的置信水平。3.5.3 如果合成不确定中 A类评估的分量占的比重较大,如3)(Acuyu而且作A 类评估时重复测量次数 n较少,则包含因子 k 必须用查 t 分布表获得。3.5.4 测量不确定度是合理评估获得的,出具的扩展不确定度的有效数字一般取 2位。3.6 报告结果3.6.1 除非采用国际上广泛公认的检测方法,可以按该方法规定的方式表示检测结果及其不确定度外,对一般的检测和校准项目应明确写明“扩展不确定度 U ,它是由合成标准不确定度 uc(y)乘以包含因子 而得到的”。扩展不确定度也可以相对形式 Urel报告。在有些检测和校准领域,检测和校准结果以dB 形式给出,而且多数不确定分量也以dB估算,则扩展不确定度也以 dB 给出。3.6.2 要注意测量结果在整个量值范围内所处的位置,如不确定度某些分量在整个量值范围内为常数,其他分量正比于测得值,这时必须评估对应整个量值范围上限和下限处的不确定度。量值范围内任一取值处的不确定

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开