温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
电极
界面
微观
结构
固态
锂离子电池
性能
影响
增辉
第 12 卷 第 7 期2023 年 7 月Vol.12 No.7Jul.2023储能科学与技术Energy Storage Science and Technology电极界面微观结构对固态锂离子电池性能的影响郝增辉,刘训良,孟缘,孟楠,温治(北京科技大学能源与环境工程学院,北京 100083)摘要:为了研究固态电解质(SE)孔隙率、裂纹形式以及界面接触面积对于固态电池(SLIB)的影响,利用电阻网络方法对固态电解质(SE)微观结构建模,对SLIB采用一维电化学耦合接触面积模型,建立了一维电化学与二维固态电解质电阻网络模型,并基于该物理模型进行了电化学阻抗谱(EIS)仿真分析。通过不同几何模型来表示电解质缺陷和裂纹,用电阻网络模型计算得到离子电导率,将不同的电解质电导率输入到电池模型中,预测微观结构对于电池容量以及阻抗的影响。研究结果表明,在090范围内,裂纹角度越小,对SE的电导率影响越小;为了更方便对比裂纹形状对电导率的影响,保持裂纹面积保持不变,随着裂纹长度的生长,电导率损失逐渐上升,到达极值点后,随裂纹长度增加,电导率损失开始下降;裂纹无量纲长度小于0.25时,三角形裂纹造成的电导率损失低于矩形缺陷和椭圆形缺陷;而无量纲长度大于0.25时,三角形缺陷的影响超过矩形缺陷和椭圆形缺陷;随孔隙率增加,SE电导率快速下降,近似呈线性关系。电解质缺陷导致电池的放电电压有所下降,在EIS仿真中体现为体相电阻增加。界面接触面积的损失对于电池容量的损失更为显著,且小倍率放电时,接触面积损失对于容量损失的影响显著低于大倍率放电时。不同接触面积(1.0、0.4)下,比容量下降60.08%,而在大倍率(50 C)时,=1.0、0.4时,比容量下降81.95%;倍率较小时,界面面积损失的影响相对较小。界面接触面积损失导致电荷转移阻抗增加,从1变化至0.2时,电荷转移阻抗增加25倍,接触面积每损失0.1,电荷转移阻抗平均增加118.60。与电解质缺陷相比,界面接触面积损失导致的阻抗增加更为明显。在实际应用中,界面接触面积大于0.7,电池才能保证高容量性能。研究仿真了导致SLIB阻抗增加的电解质与界面接触因素,丰富了相关研究。关键词:固态锂离子电池;界面接触面积比值;电解质裂纹;失效机制;电化学阻抗谱模型doi:10.19799/ki.2095-4239.2023.0097 中图分类号:TM 911 文献标志码:A 文章编号:2095-4239(2023)07-2095-10Effect of electrode interface microstructure on the performance of solid-state lithium-ion batteryHAO Zenghui,LIU Xunliang,MENG Yuan,MENG Nan,WEN Zhi(School of Energy and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China)Abstract:This study investigated the effects of porosity,crack shape,and interface contact area of solid electrolyte(SE)on solid-state batteries(STFLIBs).We used the resistance network method to model the microstructure of SE and a one-dimensional electrochemical coupled contact area model for SLIB.We established a one-dimensional electrochemical and two-dimensional SE resistance network model based on this physical model and conducted 储能锂离子电池系统关键技术专刊收稿日期:2023-02-24;修改稿日期:2023-03-25。基金项目:国家自然科学基金项目(52076012)。第一作者:郝增辉(1998),男,硕士研究生,主要研究方向为固态锂电池建模及仿真,E-mail:;通讯作者:刘训良,教授,主要研究方向为燃料电池及锂电池建模及仿真,E-mail:。引用本文:郝增辉,刘训良,孟缘,等.电极界面微观结构对固态锂离子电池性能的影响J.储能科学与技术,2023,12(7):2095-2104.Citation:HAO Zenghui,LIU Xunliang,MENG Yuan,et al.Effect of electrode interface microstructure on the performance of solid-state lithium-ion batteryJ.Energy Storage Science and Technology,2023,12(7):2095-2104.2023 年第 12 卷储能科学与技术electrochemical impedance spectroscopy(EIS)simulation analysis.By inputting different electrolyte properties into the battery model,we predicted the effect of microstructure on battery capacity and impedance.The results show that within the range of 090,smaller crack angles have less impact on the conductivity of SE.To compare the effect of crack shape on electrical conductivity more conveniently,we kept the crack area unchanged.As the crack length increases,the electrical conductivity loss gradually increases until it reaches the extreme point after which the electrical conductivity loss starts to decrease.When the dimensionless length of the crack is 0.25,the influence of triangular defects exceeds than that of rectangular and elliptical defects.With the increase of porosity,the conductivity of SE rapidly decreases in an approximately linear manner.Electrolyte defects lead to a decrease in the discharge voltage of the battery,which is reflected in the EIS simulation as an increase in bulk resistance.The loss of interface contact area has a more significant impact on the loss of battery capacity,and this impact is significantly lower at low discharge rates compared to high discharge rates.Under different contact areas(=1.0 and 0.4),the specific capacity decreases by 60.08%,while at high magnification(50 C),the specific capacity decreases by 81.95%.The impact of interfacial area loss is relatively small when the magnification is low.The loss of interface contact area results in an increase in charge transfer impedance.When changes from 1 to 0.2,the charge transfer impedance increases by 25 times,and the average charge transfer impedance increases by 118.60 for each 0.1 loss of contact area.Compared to electrolyte defects,the impedance increase caused by interfacial contact area loss is more significant.In practical applications,the battery can ensure high capacity performance only when the interface contact area is greater than 0.7.This study simulated the electrolyte interface contact factors that lead to an increase in SLIB impedance,thereby enriching relevant research in this field.Keywords:solid state lithium ion battery;interface contact area ratio;electrolyte crack;failure mechanism;electrochemical impedance spectroscopy model近年来,锂离子电池广泛应用于便携式电子设备与电动汽车中,然而,传统锂离子电池已接近其能量密度极限,无法满足日益增长的储能需求1。不可燃的固态电解质(solid electrolyte,SE)替代有机液态电解质是目前提升锂金属电池安全性与能量密度的最佳方式之一2-3。一方面,SE的使用有效解决了电解液泄漏、燃烧、爆炸等问题,还可以有效抑制锂枝晶的生长,另一方面,SE相较液态电解质往往具有较宽电化学窗口,因此,SE可以匹配电压更高的正极材料4。现阶段固态锂离子电池仍然面临着很多问题,其中SE与电极界面的微观结构及界面特性对SLIB性能有显著影响。电池长时间循环导致界面接触面积损失使得锂离子电池性能衰减5-6。Zhang等7的研究表明,SLIB多次循环后性能衰减,并观察到电极与电解质界面微观结构发生损伤,在界面处观察到明显的裂纹,该研究将电池性能衰减归因于SLIB界面接触面积的损失。Zhang等8研究了锂枝晶生长过程电池性能表现,研究发现,随枝晶生长电解质裂纹逐渐拓展,固态电池性能逐渐下降,这是由于裂纹阻断了SE内离子传输通道。目前的研究大部分集中在裂纹拓展过程以及界面接触面积损失的原因上,而定量描述裂纹以及接触面积对于S