温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
月份
城市轨道
交通
客运量
同比
增长
95.8
25
Q城市轨道交通翼(3):235.KANG Chaoqun,LI Erxia,SHENG Wanxing,et al.Dynamiccondition assessment for distribution vacuum switch cabinetsbased on multi-source information fusion J.High Voltage Appa-ratus,2017,53(3):235.8HOCHREITER S,SCHMIDHUBER J.Long short-term memoryJ.Neural Computation,1997,9(8):1735.9CRAVES A,MOHAMED A R,HINTON G.Speech recognitionwith deep recurrent neural networks C/IEEE.2013 IEEE In-ternational Conference on Acoustics,Speech and Signal Process-ing.NewYork:IEEE,2013:6645.10SUNDERMEYER M,SCHLUTER R,NEY H.LSTM neural net-works for language modelingJ.I NT ER SPEECH,2 0 12,1:194.11王田基于LSTM神经网络的我国多气象要素的多模式集成预报研究D南京:南京信息工程大学,2 0 2 0.WANG Tian.Research on multi-model integrated forecast ofmulti-meteorological elements in China based on LSTM neuralnetwork D.Nanjing:Nanjing University of Information Science&Technology,2020.12杨青,王晨蔚基于深度学习LSTM神经网络的全球股票指数预测研究J统计研究,2 0 19,36(3):6 5.YANG Qing,WANG Chenwei.A study on forecast of global stockindices based on deep LSTM neural network J.Statistical Re-search,2019,36(3):65.13MIRJALILI S,LEWIS A.The whale optimization algorithmJ.Advances in Engineering Software,2016,95:51.14 赵春华,胡恒星,陈保家,等基于深度学习特征提取和WOA-SVM状态识别的轴承故障诊断J.振动与冲击,2019,38(10):31.ZHAO Chunhua,HU Hengxing,CHEN Baojia,et al.Bearingfault diagnosis based on the deep learning feature extractionandWOA SVM state recognition J.Journal of Vibration and Shock,2019,38(10):31.2023年15王珂珂,牛东晓,甄皓,等.基于WOA-ELM模型的中国碳排放预测研究J生态经济,2 0 2 0,36(8):2 0.WANG Keke,NIU Dongxiao,ZHEN Hao,et al.Forecast of car-bon emissions in China based on WOA-ELM modelJ.Ecologi-cal Economy,2020,36(8):20.16 徐慧,付迎春,付朝川,等改进WOA算法优化SVM的网络人侵检测J.实验室研究与探索,2 0 19,38(8):12 8.XU Hui,FU Yingchun,FU Chaochuan,et al.Improved whaleoptimization algorithm to optimize support vector machine for net-work intrusion detection J.Research and Exploration in Labo-ratory,2019,38(8):128.17张义涛,王泽忠,刘丽平,等基于灰色关联分析和改进神经网络的10 kV配电网线损预测J.电网技术,2 0 19,43(4):1404.ZHANG Yitao,WANG Zezhong,LIU Liping,et al.A 10 kVdistribution network line loss prediction method based on grey cor-relation analysis and improved artificial neural networkJ.Pow-er System Technology,2019,43(4):1404.18韩学森,刘博文,李永杰,等。基于模糊和灰色关联的配电自动化开关柜故障诊断方法J电力科学与技术学报,2021,36(2):107.HAN Xuesen,LIU Bowen,LI Yongjie,et al.A fault diagnosismethod for distribution automation switch cabinet based on fuzzyand gray correlation J.Journal of Electric Power Science andTechnology,2021,36(2):107.19雷杰宇,高仕斌,韦晓广,等.基于股权分配的能源市场P2P能量共享交易模型J中国电机工程学报,2 0 2 2,42(23):8548.LEI Jieyu,GAO Shibin,WEI Xiaoguang,et al.A shareholding-based energy sharing transaction model for energy market amongpeer-to-peer prosumers J.Proceedings of the CSEE,2022,42(23):8548.(收稿日期:2 0 2 2-0 1-17)4月份城市轨道交通客运量同比增长9 5.8%2023年5月5日,据交通运输部发布的2 0 2 3年4月城市轨道交通运营数据显示,2 0 2 3年4月,31个省(自治区、直辖市)和新疆生产建设兵团共有54个城市开通运营城市轨道交通线路2 9 2 条,运营里程9 6 52.6km,实际开行列车311万列次,完成客运量2 5.3亿人次,进站客流量15.2 亿人次。4月份,客运量环比减少0.1亿人次、降低0.5%,同比增加12.4亿人次、增长9 5.8%,较2 0 19 年月均客运量增加5.4亿人次、增长2 7.3%。4月份客运强度平均水平为0.552 万人次/(kmd),较2 0 19 年全年客运强度平均水平增长1.2%。(摘编自中国交通新闻网).136