基于深度学习算法的船用高频电路工作状态检测研究何一芥,王波(武汉晴川学院北斗学院,湖北武汉430204)摘要:为了提升船用高频开关电源的运行可靠性,提出基于深度学习算法的船用高频电路工作状态检测方法。采集船用高频电路工作状态信号,作为深度受限波尔兹曼机的输入,深度受限波尔兹曼机利用2层受限玻尔兹曼机,通过2次非线性映射,提取船用高频电路工作状态特征。设置所提取的高频电路工作状态特征,作为支持向量数据描述方法的输入,将输入样本映射至高维内积空间,判定样本是否存在于高维内积空间的最优超球体内,检测船用高频电路工作状态为正常或异常状态。实验结果表明,该方法可以精准检测船用高频电路工作状态,满足船舶高频开关电源的运行可靠性需求。关键词:深度学习算法;船用高频电路;工作状态检测;非线性映射;高维内积空间;最优超球体中图分类号:U665文献标识码:A文章编号:1672–7649(2023)12–0156–04doi:10.3404/j.issn.1672–7619.2023.12.031ResearchonworkingstatedetectionofmarinehighfrequencycircuitbasedondeeplearningalgorithmHEYi-jie,WANGBo(BeiDouSchool,WuhanQingchuanUniversity,Wuhan430204,China)Abstract:Adeeplearningalgorithmbasedworkingstatedetectionmethodformarinehighfrequencycircuitisstudiedtoimprovetheoperationalreliabilityofmarinehighfrequencyswitchingpowersupply.TheworkingstatesignalsofMarinehighfrequencycircuitsarecollectedandusedasinputofthedepthlimitedBoltzmannmachine.ThedepthlimitedBoltzmannmachineusesthetwo-layerlimitedBoltzmannmachinetoextracttheworkingstatecharacteristicsofmarinehighfrequencycircuitsthroughtwononlinearmapping.Theextractedworkingstatecharacteristicsofthehigh-frequencycircuitaresetastheinputofthesupportvectordatadescriptionmethod,whichmapstheinputsampletothehigh-dimensionalinnerproductspace,determineswhetherthesampleexistsintheoptimalhypersphereofthehigh-dimensionalinnerproductspace,andde-tectswhethertheworkingstateofthemarinehigh-frequencycircuitisnormalorabnormal.Experimentalresultsshowthattheproposedmethodcanaccuratelydetecttheworkingstateofmarinehigh-frequencycircuitandmeettheoperationalreli-abilityrequirementsofmarinehigh-frequencyswitchingpowersupply.Keywords:deeplear...