基于改进YOLOv7声光融合水下目标检测方法葛慧林,戴跃伟,朱志宇,王彪(江苏科技大学海洋学院,江苏镇江212003)摘要:多变的光照条件及天气状况将会严重影响水下光学图像的成像质量,为提升水下目标检测的稳定性及检测精度,基于深度神经网络模型,对结合光学图像和声呐图形的多模态方法进行研究。首先,针对实时神经网络检测器架构YOLOv7,通过改进该检测器,使其适用于多模态输入。其次,为了有效地结合来自不同模态的影响特征,提出全新的融合模型YOLOv7-Fusion,并通过引入CE-Fusion模块,实现融合效率和准确度的提升。最后,为了解决数据集缺少的问题,利用快速风格和图像处理算法转化的方法,生成人工数据集。所设计的算法及模型目标识别准确率为0.995,具有较高检测精度;Fps为43.4,具有较高处理效率。该模型可支持真实应用,适用于不同类型的水下场景。关键词:改进YOLOv7;水下目标检测;声光融合;光学图像;声呐图像中图分类号:TB566文献标识码:A文章编号:1672–7649(2023)12–0122–06doi:10.3404/j.issn.1672–7619.2023.12.023Researchonacoustic-opticalimagefusionunderwatertargetdetectionmethodbasedonimprovedYOLOv7GEHui-lin,DAIYue-wei,ZHUZhi-yu,WANGBiao(OceanCollege,JiangsuUniversityScienceandTechnology,Zhenjiang212003,China)Abstract:Lightingandweatherconditionsseriouslyaffectthequalityofunderwateropticalimages.Toimprovethestabilityanddetectionaccuracyofunderwatertargetdetection,amulti-modalmethodcombiningopticalimagesandsonargraphicsisstudiedbasedonthedeepneuralnetworkmodel.Firstly,thearchitectureofreal-timeneuralnetworkdetectorYOLOv7isstudied,andthedetectorisimprovedtobesuitableformulti-modeinput.Secondly,inordertoeffectivelycom-binetheinfluencecharacteristicsfromdifferentmodes,YOLOv7-FusionwasproposedandCE-Fusionmodulewasintro-ducedtoimprovefusionefficiencyandaccuracy.Finally,inordertosolvetheproblemofthelackofdataset,faststyleandimageprocessingalgorithmtransformationisusedtogenerateartificialdataset.Thetargetrecognitionaccuracyofthede-signedalgorithmandmodelis0.995andFpsis43.4,withhighdetectionaccuracyandprocessingefficiency.Therefore,themodelcansupportrealapplicationsandissuitablefordifferentunderwaterscenes.Keywords:i...