钢轨
静电
喷涂
SiO_2
颗粒
行为
利用率
研究
黄启芮
表面技术 第 52 卷 第 6 期 196 SURFACE TECHNOLOGY 2023 年 6 月 收稿日期:20220516;修订日期:20220908 Received:2022-05-16;Revised:2022-09-08 基金项目:国家重点研发计划政府间国际科技创新合作重点专项(2018YFE0109400);四川省苗子工程项目(2021JDRC0086);中国国家铁路集团有限公司科技研究开发计划系统性重大项目(P2021J038)Fund:National Key R&D Program Intergovernmental Key Items for International Scientific and Technological Innovation Cooperation(2018YFE0109400);Sichuan Science and Technology Program(2021JDRC0086);Systematic Major Project of Science and Technology Research and Development Plan of China State Railway Group Co.,Ltd.(P2021J038)作者简介:黄启芮(1998),男,硕士生,主要研究方向为轮轨增黏调控技术。Biography:HUANG Qi-rui(1998-),Male,Postgraduate,Research focus:wheel/rail adhesion control technology.通讯作者:丁昊昊(1988),男,博士,助理研究员,主要研究方向为轮轨摩擦学。Corresponding author:DING Hao-hao(1988-),Male,Doctor,Research assistant,Research focus:tribology of wheel and rail.引文格式:黄启芮,张沭玥,王文健,等.钢轨轨面静电喷涂 SiO2增黏颗粒行为与利用率研究J.表面技术,2023,52(6):196-207.HUANG Qi-rui,ZHANG Shu-yue,WANG Wen-jian,et al.Behaviour and Utilization Rate of SiO2 Particles by Electrostatic Spraying on Rail SurfaceJ.Surface Technology,2023,52(6):196-207.钢轨轨面静电喷涂 SiO2增黏颗粒 行为与利用率研究 黄启芮1,张沭玥2,王文健1,2,师陆冰3,林强2,丁昊昊1,2(1.西南交通大学 唐山研究院,河北 唐山 063000;2.西南交通大学 机械工程学院,成都 610031;3.郑州机械研究所有限公司,郑州 450052)摘要:目的目的 为了改善传统撒砂过程中 SiO2增黏微粒利用率低的问题,将静电喷涂技术引入轮轨增黏领域,研究不同喷涂参数与颗粒粒径对 SiO2微粒行为与利用率的影响,并进一步对比分析静电喷涂微粒与传统撒砂的增黏效果。方法方法 利用 Gema 静电喷枪与静电喷涂动态试验平台进行喷涂试验;利用MJP30A 轮轨滚动磨损与接触疲劳试验机进行轮轨黏着与磨损试验;利用光学显微镜(OM)对 SiO2微粒吸附情况进行观察与分析,并通过电子天平测量与计算轨面颗粒量与颗粒利用率。结果结果 相较于未施加静电电压,静电电压为 90 kV 时轨面颗粒量提升了 3.8 倍。静电电压由 30 kV 增加至 70 kV 时,颗粒利用率提升约 60%;当静电电压进一步增加至 90 kV 时,由于颗粒带电量趋于饱和,颗粒利用率仅提升 10%。SiO2微粒利用率随着喷嘴高度与颗粒粒径的增大先增大后减小,喷嘴高度为 25 cm 且颗粒粒径为 300 目时颗粒利用率最高,可达 60%;300 目 SiO2微粒在静电电压为 90 kV 时,随着喷枪移速的增大,喷枪在单位距离上喷涂时间相对减少,使得喷涂在钢轨轨面的颗粒量降低。90 kV 静电喷涂SiO2微粒增黏时,最大黏着系数接近传统撒砂增黏,有效作用时间是传统撒砂的 2.2 倍,轮轨磨损率仅为传统撒砂增黏的 75%与 65%,轮轨损伤显著减轻。结论结论 利用静电喷涂技术可以有效提升 SiO2微粒在钢轨轨面的利用率,并提升颗粒在轨面的吸附性;静电喷涂 SiO2微粒增黏与传统撒砂增黏的黏着系数相近,且轮轨磨损率更低。关键词:静电喷涂;轮轨增黏;撒砂增黏;增黏颗粒;颗粒参数 中图分类号:TH117.3 文献标识码:A 文章编号:1001-3660(2023)06-0196-12 DOI:10.16490/ki.issn.1001-3660.2023.06.017 Behaviour and Utilization Rate of SiO2 Particles by Electrostatic Spraying on Rail Surface HUANG Qi-rui1,ZHANG Shu-yue2,WANG Wen-jian1,2,SHI Lu-bing3,LIN Qiang2,DING Hao-hao1,2 摩擦磨损与润滑 第 52 卷 第 6 期 黄启芮,等:钢轨轨面静电喷涂 SiO2增黏颗粒行为与利用率研究 197 (1.Tangshan Institute,Southwest Jiaotong University,Hebei Tangshan 063000,China;2.School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China;3.Zhengzhou Research Institute of Mechanical Engineering Co.,Ltd.,Zhengzhou 450052,China)ABSTRACT:In railway systems,sands are often applied to the wheel-rail interface to improve the adhesion coefficient.However,hard particles such as quartz sand will inevitably cause wear to the wheel and rail after entering the contact area of wheel and rail.The viscosity increase effect of sand sprinkling mainly comes from the broken sand particles and has nothing to do with particle size.Therefore,using SiO2 particles instead of sand particles to increase viscosity can not only meet the viscosity increase effect but also significantly reduce wheel-rail damage.However,due to the small particle size and lightweight of SiO2 particles,it is difficult to effectively apply SiO2 particles to the wheel-rail interface by using the sand spout device in the current railway system.If electrostatic spraying is used to improve the utilization rate of SiO2 particles,it will have a high application prospect.Therefore,the work aims to introduce electrostatic spraying technology into the wheel-rail viscosity increase field and study the effects of different spraying parameters and particle sizes on the behavior and utilization of SiO2 particles,so as to solve the problem of low utilization of SiO2 viscosity increase particles in the traditional sanding process,and further compare and analyze the viscosity increase effects of electrostatic spraying particles and traditional sanding.The rail material selected in the test was U75V rail cut at each section of 50 cm from the site,and the size of SiO2 micro-powder was 100,200,300 and 500 mesh,and the content of silica in SiO2 micro-powder was more than 95%.Before each coating test,the rail surface was sanded,polished and cleaned with anhydrous ethanol and the spray gun was flushed with compressed air to prevent powder from blocking the muzzle,and the grounding wire was fixed to the rail.During the test,the Gema electrostatic spray gun was fixed on the rodless slider of the dynamic test bench.At the end of the coating test,it stood for 5 min,and after the suspended particles in the air were completely deposited,the particles adsorbed on the rail surface were collected and weighed by an electronic balance,and then the effective utilization rate was calculated,and the particle adsorption was observed by an optical microscope.Compared with the traditional spraying method,the amount of SiO2 particles on the rail surface by electrostatic spraying increased about 3.8 times.When the electrostatic voltage was increased f