EEG
signal
processing
电信号
处理
方法
算法
EEG SIGNAL PROCESSING,第一页,共二十七页。,EEG signal modelling,1,Available features,2,Classification algorithms,3,Independent Component Analysis,4,Content,Sparse Representation,5,第二页,共二十七页。,1,EEG signal modelling,Bioelectricity,1,Signal generation system,2,第三页,共二十七页。,bioelectricity,Signal generation system,Excitation model,第四页,共二十七页。,signal generation system,bioelectricity,Linear Model,第五页,共二十七页。,signal generation system,bioelectricity,Nonlinear Model,第六页,共二十七页。,2,Available features,Basic features,1,Modern methods,2,第七页,共二十七页。,Temporal Analysis Signal Segmentation:label the EEG signals by segments of similar characteristics.,basic features,Modern methods,第八页,共二十七页。,Temporal Criteria,basic features,Modern methods,第九页,共二十七页。,Frequency AnalysisSuboptimal DFT,DCT,DWT;Optimal KLT(Karhunen-Love)Demerits:complete statistical information,no fast calculation.,basic features,Modern methods,第十页,共二十七页。,Signal Parameter Estimation AR model:Merits:Outperform DFT in frequency accuracy.Demerits:suffer from poor estimation of parameters.Improvements:accurate order&coefficients.,modern methods,Basic features,第十一页,共二十七页。,AR coefficients estimation methodsYule-Walker aryule(x,p)Merits:Toeplitz matrix Levinson-Durbin,fastest!Demerits:with window bad resolution of PSD,modern methods,Basic features,第十二页,共二十七页。,AR coefficients estimation methodsCovariance method arcov(x,p),armcov(x,p)Merits:without window good resolution of PSD Demerits:slowBurg arburg(x,p)Merits:accurate approximation of PSD Demerits:line skewing&splitting,modern methods,Basic features,第十三页,共二十七页。,modern methods,Basic features,Comparison,第十四页,共二十七页。,Principal Component AnalysisUse same concept as SVDDecompose data into uncorrelated orthogonal componentsAutocorrelation matrix is diagonalizedEach eigenvector represents a principal componentApplication decomposition,classification,filtering,denoising,whitening.,modern methods,Basic features,第十五页,共二十七页。,3,Sparse Representation,Sparse Approximation,1,Sparse Decomposition,2,第十六页,共二十七页。,Over-complete dictionary atomsHilbert space:Signal:Error:“Sparse:lN,satisfy limited error.,sparse approximation,Sparse decomposition,第十七页,共二十七页。,Major algorithms:Basic Pursuit,Matching Pursuits,OMPMatching Pursuits(MP):1st:kth:,sparse decomposition,Sparse approximation,与 正交,第十八页,共二十七页。,K-SVD:training dictionaryPotential applications for EEG:Coefficients featuresERP detectionAbnormal EEG detectionClassification of different status of EEG,sparse decomposition,Sparse approximation,第十九页,共二十七页。,4,Classification algorithms,Common methods,1,第二十页,共二十七页。,Nave BayesLDA:Linear Discriminant AnalysisHMM:Hidden Markov ModellingSVM:Support Vector MachineK-meansANNs:Artificial Neural NetworksFuzzy Logic,Common methods,第二十一页,共二十七页。,5,Independent Component Analysis,ICA approaches,1,Application,2,第二十二页,共二十七页。,Independent Component Analysis,ica approaches,applications,第二十三页,共二十七页。,ica approaches,applications,ICA approaches:Factorizing the joint PDF into its marginal PDFsDecorrelating signals through timeEliminating temporal cross-correlation function,第二十四页,共二十七页。,BSS:Blind Source SeparationNormal brain rhythms,event-related sources Artefacts eye movement&blinking,swallow,applications,Ica approaches,第二十五页,共二十七页。,THANKS!,第二十六页,共二十七页。,内容总结,EEG SIGNAL PROCESSING。Optimal KLT(Karhunen-Love)。Yule-Walker aryule(x,p)。Covariance method arcov(x,p),armcov(x,p)。Burg arburg(x,p)。Matching Pursuits(MP):。K-SVD:training dictionary。THANKS,第二十七页,共二十七页。,