分享
甲状腺癌铁死亡预后风险模型...其潜在机制的生物信息学分析_杨仁义.pdf
下载文档

ID:2519080

大小:1.67MB

页数:12页

格式:PDF

时间:2023-06-29

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
甲状腺癌 死亡 预后 风险 模型 潜在 机制 生物 信息学 分析 仁义
第 49 卷 第 2 期2023年 3 月吉林大学学报(医学版)Journal of Jilin University(Medicine Edition)Vol.49 No.2Mar.2023DOI:10.13481/j.1671587X.20230217甲状腺癌铁死亡预后风险模型的构建及其潜在机制的生物信息学分析杨仁义1,2,彭书旺1,王永恒1,董宇轩1,2,段姗姗1(1.湖南中医药大学第一附属医院胃肠甲状腺血管外科,湖南 长沙 410007;2.湖南中医药大学研究生院,湖南 长沙 410208)摘要 目的目的:筛选甲状腺癌(TC)差异预后铁死亡基因(PFRGs),构建 TC 铁死亡相关基因(FRGs)预后风险模型,并阐述其潜在作用机制。方法方法:从癌症基因组图谱(TCGA)数据库获取基因表达及临床数据,从铁死亡疾病数据库(FerrDb)和人类基因数据库(GeneCards)中获取 FRGs,采用 R软件筛选 TCPFRGs;从 TCGA 和 GTEx数据库获取 TC组织和甲状腺组织中 PFRGs mRNA 表达数据,从人类蛋白图谱(HPA)数据库获取免疫组织化学结果,验证 PFRGs mRNA 和蛋白表达的差异;采用时间依赖性受试者工作特征(time-ROC)曲线和 Kaplan-Meier曲线评估 PFRGs与 TC患者生存和预后的关系;采用单因素和多因素 Cox回归分析计算 PFRGs表达的风险评分,纳入 TC患者临床数据,进行独立预后分析,并构建 Nomogram 图;TCGA 数据库中 PFRGs与各基因表达的相关性采用 Spearman相关分析,计算相关系数并筛选共表达基因;采用生物信息学方法对 PFRGs共表达基因进行蛋白-蛋白互作(PPI)网络图、基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析。结果结果:在 TC 中差异分析筛选出 3 317个上调基因和 3 456个下调基因,单因素 Cox回归分析筛选出 343个差异表达基因(DEGs)与 TC 患者的生存和预后相关,其中包括 CD44、膜联蛋白 A1(ANXA1)和 核 受 体 亚 家 族 4A 类 成 员 1(NR4A1)。Kaplan-Meier 和 time-ROC 曲 线 显 示 CD44、ANXA1和 NR4A1的表达与 TC 患者生存和预后有关联(P=0.048,P=0.005,P=0.036),且均具有良好的 1、3和 5年生存预测作用。构建 3个基因风险评分系统,风险评分作为 TC 患者临床预后因子 风险比(HR)=8.882,95%CI:1.56150.547,P=0.014),风险评分越高,生存预后越差P=0.011,ROC曲线下面积(AUC)=0.761、0.767和 0.722;风险评分联合 TC患者临床特征构建的 Nomogram 图(C-index=0.938)对 TC 患者的生存具有较好的预测作用。共表达与富集分析,TC 铁 死 亡 主 要 与 其 共 表 达 基 因(DUSP1、DUSP5、DUSP6、FOS、IL1RAP、JUN、MET、RASGRF1、TGFA、TGFBR1、TNFRSF1A)介导 MAPK 信号通路,影响 MAPK 活性和 p-MAPK活性,调控 MAPK 失活。结论结论:基于生物信息学筛选出的 TC 差异 PFRGs CD44、ANXA1和 NR4A1与 TC 患者生存和预后相关,由 3个基因构建的预测模型具有较好的预测能力,其作用机制可能与多基因网状调控 MAPK信号通路有关。关键词 甲状腺肿瘤;铁死亡;风险评分;Nomogram 图;生存预后中图分类号 R736.3文献标志码 A文章编号 1671587X(2023)02040212收稿日期 20220417基金项目 国家自然科学基金青年基金项目(82002397);湖南省卫健委科研计划项目(202104010382,B20180739,D202304018086)作者简介 杨仁义(1996),男,湖南省常德市人,医师,医学硕士,主要从事恶性肿瘤的中西医结合防治及机制方面的研究。通信作者 段姗姗,主治医师(E-mail:);王永恒,主任医师,硕士研究生导师(E-mail:)402杨仁义,等.甲状腺癌铁死亡预后风险模型的构建及其潜在机制的生物信息学分析Construction of ferroptosis prognostic risk model of thyroid cancer and bioinformatics analysis on its potential mechanismYANG Renyi1,2,PENG Shuwang1,WANG Yongheng1,DONG Yuxuan1,2,DUAN Shanshan1(1.Department of Gastrointestinal and Thyroid Vascular Surgery,First Affiliated Hospital,Hunan University of Traditional Chinese Medicine,Changsha 410007,China;2.Graduate School,Hunan University of Traditional Chinese Medicine,Changsha 410208,China)ABSTRACT Objective:To screen the differential prognostis ferroptosis genes of thyroid cancer(TC)and construct the prognostic risk model of TC ferroptosis related genes(FRGs),and to clarify its potential mechanism at the molecular level.Methods:The gene expression and clinical data were obtained from The Cancer Genome Atlas(TCGA)Database.The FRGs were obtained from FerrDb and GeneCards Databases,and R software was used to screen the PFRGs of TC;the PFRGs mRNA expressions in TC and thyroid tissues were obtained from TCGA and GTEx Databases,and the immunohistochemical results were obtainted from the Human Protein Atlas(HPA)Database to verify the differences in the expressions of PFRGs mRNA and protein;time-receiver operating characteristic(time-ROC)curve and Kaplan-Meier curve were used to evaluate the relationships between PFRGs and survival and prognosis of the TC patients;univariate and multivariate Cox regression analysis were used to calculate the risk scores of PFRGs expression,the clinical data of the TC patients were included,the independent prognostic analysis was performed,and the Nomogram chart was constructed.Spearman correlation analysis was used to obtain the correlation between the expressions of PFRGs and the expressions of other genes in TCGA Database and expressions of various genes,the correlation coefficient was calculated and the co-expressing genes were screened;the co-expression genes of PFRGs were analyzed by protein-protein interaction(PPI)network diagram,Geno Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis.Results:A total 3 317 up-regulated genes and 3 456 down-regulated genes in TC were screened out by differential analysis;343 differentially expressed genes(DEGs)screened out by univariate Cox regression were associated with the survival and prognosis of the TC patients,including CD44,Annexin A1(ANXA1),and nuclear receptor subfamily 4 group A member 1(NR4A1).The Kaplan-Meier and time-ROC curves results showed that the expressions of CD44,ANXA1,and NR4A1 were associated with the survival and prognosis of the TC patients(P=0.048,P=0.005,P=0.036),and all had good 1-year,3-year,and 5-year survival prediction effects;the risk scoring system of three genes was constructed to calculate the risk score,and the risk score was a prognostic factor of the TC patients hazard ratio(HR)=8.882,95%CI=1.56150.547,P=0.014,and the higher the risk score was,the worse the survival prognosis wasP=0.011,area under curve(AUC)=0.761,0.767,and 0.722);the Nomogram chart(C-index=0.938)constructed by the risk score combined with the clinical characteristics of the TC patients had a good predictive effect on the survival of the TC patients.The co-expression and enrichment analy

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开