文章编号:1000-8055(2023)04-0889-12doi:10.13224/j.cnki.jasp.20220609基于最大相关雷尼熵与相空间重构的航空发动机复合故障信号特征提取方法张震1,刘保国1,周万春2,冯伟1(1.河南工业大学河南省超硬磨料磨削装备重点实验室,郑州450001;2.郑州工程技术学院机电与车辆工程学院,郑州450044)摘要:针对低信噪比(SNR),复杂噪声工况下,复合故障信号特征难以提取的问题。提出基于相空间重构融入最大相关雷尼熵解卷积的信号特征提取方法,该方法以雷尼熵为敏感特征范数,以最大相关雷尼熵解卷积为基本方法,并在其中融入具有噪声抑制特性和分解特性的相空间重构技术。结果表明:雷尼熵与峭度相比,在故障灵敏度相当并略好的情况下,对偶发噪声敏感度仅为峭度的18.4%。通过仿真验证,实验数据验证以及台架实验验证,证明了本文方法与现有的对比方法相比,在提取复合故障信号特征方面具有优势。关键词:雷尼熵;相空间重构;复合故障;滚动轴承;解卷积中图分类号:V263.6;TH133.33文献标志码:ACompositefaultsignalfeatureextractionmethodforaero-enginebasedonmaximumcorrelationRényientropyandphasespacereconstructionZHANGZhen1,LIUBaoguo1,ZHOUWanchun2,FENGWei1(1.HenanKeyLaboratoryforSuperabrasiveGrindingEquipment,HenanUniversityofTechnology,Zhengzhou450001,China;2.SchoolofMechanical,ElectricalandVehicleEngineering,ZhengzhouUniversityofTechnology,Zhengzhou450044,China)Abstract:Inordertosolvetheproblemofcomplexfaultsignalfeatureextractionundertheconditionoflowsignal-to-noiseratio(SNR)andcomplexnoise,afeatureextractionmethodbasedonphasespacereconstructionandmaximumcorrelationRényientropydeconvolutionwasproposed.Rényientropywastakenastheperformanceindex,andthemaximumcorrelationRényientropydeconvolutionwastakenasthebasicmethod,andthephasespacereconstructiontechniquewasincorporatedwiththecharacteristicsofnoisesuppressionanddecomposition.ResultsshowedthatthesensitivityofRaneyentropywasonly18.4%ofthekurtosiswhenthefaultsensitivitywasequaltoandslightlybetterthanthatofkurtosis.Throughsimulation,experimentaldataandbenchtest,thismethodwasprovedsuperiortoexistingcomparisonmethodsinextractingthefeaturesofcompositefaultsignals...