2023年第47卷第5期JournalofMechanicalTransmission基于AO-VMD和IAO-SVM的齿轮箱故障诊断王博南新元(新疆大学电气工程学院,新疆乌鲁木齐830047)摘要针对提高变分模态分解(VariationalModeDecomposition,VMD)的自适应性、优选本征模态分量(IntrinsicModeFunction,IMF)及多故障分类的问题,提出一种天鹰优化器(AquilaOptimizer,AO)优化VMD、综合评价模型优选IMF、改进天鹰优化器(ImprovedAquilaOptimizer,IAO)优化支持向量机(SupportVectorMachine,SVM)的齿轮箱故障诊断方法。首先,采用AO优化VMD的参数并分解原始信号;其次,构建基于相关系数、峭度、包络熵、能量熵的CRITIC-TOPSIS综合评价模型,优选IMF,提取能量熵建立特征向量;最后,将其输入IAO-SVM识别故障类型。通过实验验证所提出方法的有效性。关键词天鹰优化器变分模态分解综合评价模型改进天鹰优化器支持向量机FaultDiagnosisofGearboxesBasedonAO-VMDandIAO-SVMWangBoNanXinyuan(SchoolofElectricalEngineering,XinjiangUniversity,Urumqi830047,China)AbstractAimingattheproblemsofimprovingtheadaptabilityofvariationalmodedecomposition(VMD)andinordertooptimizetheintrinsicmodefunction(IMF)andmulti-faultclassification,agearboxfaultdiagno⁃sismethodisproposed,withwhichtheAquilaoptimizer(AO)optimizesVMD,thecomprehensiveevaluationmodeloptimizesIMF,andimprovestheAquilaoptimizeroptimizationsupportvectormachine(IAO-SVM).First⁃ly,AOisusedtooptimizetheparametersofVMDanddecomposetheoriginalsignal.Secondly,aCRITIC-TOP⁃SIScomprehensiveevaluationmodelbasedoncorrelationcoefficient,kurtosis,envelopeentropy,energyentropyisconstructedtooptimizeIMF,andenergyentropyisextractedtoestablishfeaturevectors.Finally,itisinputin⁃toIAO-SVMtoidentifyfaults.Theeffectivenessofthismethodisverifiedbyexperiments.KeywordsAquilaoptimizerVariationalmodedecompositionComprehensiveevaluationmodelIm⁃provedaquilaoptimizeralgorithmSupportvectormachine0引言齿轮箱是机械设备传动系统的核心部件[1],其结构复杂、工况恶劣,常出现故障。由齿轮箱故障导致的事故将会造成巨大的损失[2]。因此,对齿轮箱进行有效的故障识别具有重大意义。变分模态分解(VariationalModeDecomposition,VMD)具有充分的理论依据,改善了经验模态...