2023年第47卷第5期JournalofMechanicalTransmission基于深度迁移学习的齿轮故障诊断方法刘世豪1王细洋2龚廷恺2(1南昌航空大学飞行器工程学院,江西南昌330063)(2南昌航空大学通航学院,江西南昌330063)摘要针对齿轮故障样本欠缺问题,提出一种基于Hilbert-Huang谱和预训练VGG16模型的迁移学习故障诊断方法。对振动信号进行经验模态分解(EmpiricalModeDecomposition,EMD)得到本征模态函数(IntrinsicModeFunction,IMF),同时取相关系数最大的IMF做Hilbert变换,获取时频谱;利用预训练VGG16提取变负载下和各健康状态下齿轮的Hilbert-Huang谱图像特征;采用全局均值池化层取代VGG16模型部分全连接层,进行分类输出。实验结果表明,在少量的样本数据下,该方法的齿轮故障诊断准确率达到98.86%,优于TLCNN和TranVGG-19等迁移学习方法,证明了该方法在齿轮故障诊断中具有一定研究价值。关键词迁移学习VGG16模型Hilbert-Huang谱齿轮故障诊断全局均值池化GearFaultDiagnosisMethodBasedonDeepTransferLearningLiuShihao1WangXiyang2GongTingkai2(1SchoolofAircraftEngineering,NanchangHangkongUniversity,Nanchang330063,China)(2SchoolofNavigation,NanchangHangkongUniversity,Nanchang330063,China)AbstractAimingattheproblemofinsufficientgearfaultsamples,afaultdiagnosismethodoftransferlearningbasedonHilbert-Huangspectrumandpre-trainedVGG16modelisproposed.Firstly,theintrinsicmodefunction(IMF)isobtainedbyEmpiricalModeDecomposition(EMD)ofvibrationsignals,andthetimespectrumisobtainedbyHilberttransformofIMFwiththelargestcorrelationcoefficient.Secondly,pre-trainedVGG16isusedtoextractHilbert-Huangspectrumimagefeaturesofgearsundervaryingloadsandundervari⁃oushealthconditions.Finally,theglobalaveragepoolinglayerisusedtoreplacepartialfullconnectionlayerofVGG16modelforclassificationoutput.Experimentalresultsshowthatwithasmallamountofsampledata,theaccuracyofgearfaultdiagnosisreaches98.86%,whichisbetterthanthetransferlearningmethodssuchasTLCNNandTranVGG-19.Itisprovedthatthemethodpresentedinthispaperhassomeresearchvalueingearfaultdiagnosis.KeywordsTransferlearningVGG16Hilbert-HuangspectrumGearfaultdiagnosisGlobalaver⁃agepooling0引言在工业4.0背景下,工厂设备呈现复...