温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
高温
干燥
室温
加湿
循环
作用
下压
黄土
电阻率
特征
秦鹏举
书书书Journal of Engineering Geology工程地质学报10049665/2023/31(2)-0358-10秦鹏举,刘宇菠,闫庆晨,等 2023 高温干燥室温加湿循环作用下压实黄土体变和电阻率特征J 工程地质学报,31(2):358367 doi:1013544/jcnkijeg20210781Qin Pengju,Liu Yubo,Yan Qingchen,et al 2023 Effect of cycles of drying at high temperature and wetting at ambient temperature on volume changeand electrical resistivity behaviors of compacted loessJ Journal of Engineering Geology,31(2):358367 doi:1013544/jcnkijeg20210781高温干燥室温加湿循环作用下压实黄土体变和电阻率特征*秦鹏举刘宇菠闫庆晨轩龙龙(太原理工大学土木工程学院,太原 030024,中国)(山西省交通科技研发有限公司,太原 030032,中国)摘要工程地质环境中,高温加速土体干燥,降雨浸湿土体。干湿循环导致土体劣化易引起基础设施和建筑物损害。所以,有必要研究干湿循环对压实黄土体变特性的影响以评价地基和路基等的稳定性。本研究制备了初始含水量为 11%,不同干密度(1.5 gcm3、1.6 gcm3和 1.7 gcm3)的 3 组试样。试样在 80 下干燥,然后室温下浸入去离子水中饱和,直达预定的干湿循环次数。同时,用数字 LC 仪测量土样电阻率,以表征土样的结构变化。采集干燥状态试样表面图像,以分析裂隙开展情况。干湿循环结束后,进行饱和土样的恒应变速率(CS)试验,获取压缩曲线并确定压实黄土的变形参数。结果表明,随着干湿循环次数的增加,土样电阻率逐渐增大,并且裂隙比增大。无竖向压力下,开始从非饱和状态高温干燥引起土样收缩,随后室温饱和使土样膨胀;之后,从饱和状态高温干燥引起土样膨胀,随后室温下饱和土样引起其收缩。另外,随干湿循环次数增加,弹性压缩指数增加,对于较低密度土样塑性压缩指数减小而屈服应力增大,对于较高密度土样塑性压缩指数呈现增大趋势而屈服应力减小。本研究可为工程实践中压实黄土工后沉降分析提供理论基础。关键词压实黄土;干湿循环;体变;裂隙;电阻率中图分类号:P642.13+1文献标识码:Adoi:1013544/jcnkijeg20210781*收稿日期:20211201;修回日期:20220222基金项目:国家自然科学基金(资助号:41907239,42177138),中国博士后科学基金(资助号:2020M680909)This research is supported by the National Natural Science Foundation of China(Grant Nos 41907239,42177138)and China Postdoctoral ScienceFoundation(Grant No 2020M680909)第一(通讯)作者简介:秦鹏举(1986),男,博士,副教授,硕士生导师,主要从事工程地质非饱和土力学方面的科研与教学工作 E-mail:qinpengjutyuteducnEFFECT OF CYCLES OF DYING AT HIGH TEMPEATUE AND WET-TING AT AMBIENT TEMPEATUE ON VOLUME CHANGE AND ELEC-TICAL ESISTIVITY BEHAVIOS OF COMPACTED LOESSQIN PengjuLIU YuboYAN QingchenXUAN Longlong(College of Civil Engineering,Taiyuan University of Technology,Taiyuan 030024,China)(Shanxi Transportation Technology esearch and Development Co Ltd,Taiyuan 030032,China)AbstractIn the environment of engineering geology,high temperatures accelerate drying of the soil mass that isalso subject to wetting by rainfall Dry-wet cycles tends to cause degradation of the soil mass,which can seriouslydamage the infrastructure and buildings on the soil mass Investigation of dry-wet cycling on deformation behavior ofcompacted loess is indispensable to evaluate the stability of basement and subgrade in the engineering practice Inthe present work,we fabricated three groups of samples with one water content of 11%and three different dry den-sities(15,16 and 17 g cm3)The samples were desiccated at 80,followed by wetting at an ambient temper-ature through immersing the samples into deionized water until a designated dry-wet cycling number Upon cycling,electrical resistivity was measured by a digital LC meter to characterize the structure change of the samples Be-sides,the photographs of the sample surface after desiccation were taken to observe crack evolution At the end ofthe cycles,constant rate of strain(CS)was imposed on the saturated samples to determine the deformation parame-ters of the compacted loss esults shows that the electrical resistivity increases due to the increase of crack ratio asthe cycling numbers increase Since the vertical stress is zero,the volume of the unsaturated compacted samples de-crease as undergoing initial drying in high temperature,followed by expansion as the samples are immersed into wa-ter Subsequently,expansion continues in the process of desiccating the samples at 80 and shrinkage then occursafter saturating the samples Besides,as dry-wet cycling numbers increases,the elastic compressibility index in-creases,and the plastic compressibility index decreases and the yield pressure increases for samples with low densi-ty but the tendency is opposite for samples with high density This study can provide a theoretical basis for post-con-struction settlement analysis in the engineering practiceKey wordsCompacted loess;Dry-wet cycling;Volume change;Cracks;Electrical resistivity0引言黄土在世界上分布相当广泛。在中国,黄土的面积和厚度最大(Sun,2002)。风积土广泛分布于中国黄土高原,面积约 6.3105km2,包括甘肃、宁夏、陕西和河南等地(Tan,1988;Miao et al,1990)。在工程实践中,原状黄土难免存在节理并具有水敏性,将原状黄土进行压实,以增加密实度和降低水敏性,从而改善湿陷性黄土工程性质(Jefferson et al,2005;陈存礼等,2006;Wang et al,2016;张茂省等,2016;Ma et al,2017;冯立等,2019)。压实黄土处于复杂的环境中,受到降雨浸湿和蒸发干燥交替作用。干湿循环作用导致黄土体逐渐退化,从而影响建筑物地基、路基等稳定性(Chen et al,2018)。Muoz-Castelblanco et al(2011)观察到,由于法国北部黄土沉积物的湿陷性,施工期间黄土层暴露于降雨和干燥环境时,产生非常明显的陷穴。然而,干湿循环对压实黄土体积变化特性的影响研究较少。因此,有必要开展相关研究,以便深入了解土体的变形特性和确保工程建设的安全。干湿循环作用对压实黄土体积变化的影响有一定研究。研究认为,经过几次干湿循环后,土体体积变化趋于稳定(刘宏泰等,2010;袁志辉等,2017)。另外,干湿循环对材料的力学性能有显著影响,初始密度越高,干湿循环的影响越明显(胡长明等,2018)。压缩应变随着循环次数的增加而增加(王飞等,2016)。研究还发现,原状和重塑黄土的结构强度和抗拉强度随着循环次数的增加而降低,最终达到恒定状态(袁志辉等,2017)。Zhang et al(2018)发现,由于干湿循环次数的增加,两个不同区域黄土试样的抗剪强度和黏聚力值显著降低。但是,对于干湿循环作用下压实黄土体积和结构变化的关注较少,仍需进一步研究,以深入了解压实黄土的相关特性。目前,饱和土的热力学行为已有广泛的研究,但主要以黏土为研究对象(Baldi et al,1988;Del Olmoet al,1996;Sultan et al,2002)。研究发现,加热时土样在低各向同性应力下膨胀。在高各向同性应力下,加热首先引起膨胀,然后引起收缩。从物理角度看,饱和黏土在加热时会膨胀。这是由于水的热膨胀系数远大于周围土骨架的热膨胀系数,因此受土骨架的限制导致孔隙水压力增加(Britto et al,1989)。相比对黏土的研究,黄土研究的较少。Nget al(2018)发现,50 下压实黄土的加湿收缩约为 5 下的三倍。Cheng et al(2020)发现,当土样温度从 5 升高到 50 时,饱和原状、压实和重塑试样的屈服应力分别降低了约 33%、46%和 51%。这些研究主要集中在饱