分享
高分子玻璃化熵理论研究进展_袁琦璐.pdf
下载文档

ID:2468789

大小:1.57MB

页数:12页

格式:PDF

时间:2023-06-25

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
高分子 玻璃化 理论研究 进展 袁琦璐
高分子玻璃化熵理论研究进展袁琦璐1,2,杨镇岳1,徐文生1,2*1.中国科学院长春应用化学研究所高分子物理与化学国家重点实验室,长春 1300222.中国科学技术大学应用化学与工程学院,合肥 230026*通讯作者,E-mail:收稿日期:2022-12-19;接受日期:2023-01-17;网络版发表日期:2023-03-13国家自然科学基金(编号:22222307,21973089,222030879)资助项目摘要玻璃化问题的理论描述是凝聚态物理中的重要基础科学研究课题.高分子是研究玻璃化的典型模型体系,其独有的分子特征为发展有效、普适的玻璃化理论提供了新的机遇.构型熵是发展玻璃化理论的一个核心物理量.基于构型熵的模型可追溯至近一个世纪前观察到的熵与动力学关联的实验现象,并且近年来该理论的发展进入了一个新的阶段,特别是在高分子玻璃化的研究中.本文首先对玻璃化经典熵理论的发展进行了回顾,并介绍了高分子玻璃化熵理论的基本框架.之后,从分子细节影响高分子玻璃化的物理机制、热力学标度与活化体积的理论描述和高分子过冷液体的热力学-动力学关系三个方面阐述了本课题组近年来基于高分子玻璃化熵理论的研究进展,重点强调了该理论在理解高分子玻璃化关键问题中的价值和优势.最后,探讨了高分子玻璃化熵理论进一步发展面临的问题与挑战,并且对玻璃化理论研究的未来发展方向进行了展望.关键词玻璃化,高分子,构型熵,动力学1引言玻璃是生产生活和制造业中的常规材料,同时在现代高科技领域中也愈发凸显出价值.玻璃不仅作为窗户和容器这类常见的结构材料,还被用作特种功能材料,如非易失性存储器、有机发光二极管、有机电子元器件、分子过滤装置等15.只要降温足够快使其来不及结晶,几乎所有物质都可以在低温条件下形成玻璃.然而,由于非晶体系具有复杂、无序的结构,传统的统计物理方法在处理玻璃化问题时往往会遇到很大困难.正因为如此,尽管经过了多年发展,玻璃化问题的理论描述一直是凝聚态物理中的前沿课题.高分子是研究玻璃化的典型模型体系6.一方面,由于高分子材料不规则的链序列结构含量较高,致使其平衡熔点可以低于玻璃化转变温度Tg,无论降温速率多快,总能够得到其玻璃态.另一方面,较刚性的高分子结晶非常慢,因此很容易被冷却成玻璃态,从而可以有效避免在小分子体系中由结晶导致的复杂性.同时,高分子的分子细节(如单体结构、结构单元排列、链刚性、链拓扑结构、链长等)会显著影响玻璃化的特征性质,这一高分子材料独有的分子特征为发展有效、普适的玻璃化理论提供了新的机遇.从实际角度看,高分子玻璃具有质轻、力学性能独特等特点7,使其在航空航天和汽车制造等领域具有广泛的的应用引用格式:Yuan QL,Yang Z,Xu WS.Advances in the generalized entropy theory of polymer glass formation.Sci Sin Chim,2023,53:616627,doi:10.1360/SSC-2022-0247 2023 中国科学杂志社中国科学:化学2023 年第 53 卷第 4 期:616 627SCIENTIA SINICA C聚合物结构与性能专刊专题论述价值.过去几十年的研究已经建立了玻璃体系的多个现象学特征813.其中,一个最基本的特征表现为体系动力学在趋近Tg时急剧变慢,但是其结构(如径向分布函数和静态结构因子)并不发生明显变化.玻璃材料的黏度可在相对较窄的温度范围内变化超过15个数量级.针对这一现象,Angell14,15引入了“脆性”(fragility)指数m来表征材料动力学对温度依赖性的强弱:()mTT=log/(1)T Tg=g其中是结构松弛时间,T为绝对温度.对“强”玻璃体系(如二氧化硅),其动力学在实验可测量的温度范围内都近似符合Arrhenius方程:AHk T=exp(2)ooB其中Ao为前置因子,Ho为高温活化焓,kB为玻尔兹曼常数.与之形成对比,“脆”玻璃体系(如邻三联苯)的动力学虽然在高温区符合Arrhenius方程,但是随温度降低会表现出显著的非Arrhenius行为,并且通常符合Vo-gel-Fulcher-Tammann(VFT)关系式1618:DTTT=exp(3)0VFTVFT其中0是前置因子,D是脆性指数,TVFT是外推至无穷大处所对应的温度.为了解释玻璃材料的复杂动力学特征,过去近一个世纪的研究已经提出了多种理论机制.Simon19以及Kauzmann20很早以前就意识到,玻璃材料的熵在降温过程中会逐渐降低.特别是,Kauzmann20在1948年就敏锐地察觉到玻璃材料在趋近Tg时动力学的急剧变化可能通过熵的变化得到解释,并且提出了著名的“Kauzmann佯谬”或“熵危机”,即如果按照构型熵(con-figurational entropy)Sc在Tg以上的变化进行外推将出现非物理的负熵行为.Kauzmann推测Sc等于零时的温度对应着“理想玻璃化转变”.构型熵一般定义为液体的总熵减去振动熵.需要指出的是,作为描述高分子链构象数的物理量,构象熵(conformational entropy)在高分子物理中被广泛讨论6.Douglas等21,22基于格子模型的研究暗示体系构型熵与高分子链构象熵可能存在着某种联系,但是目前尚无研究建立起二者之间的确切关系.尽管Kauzmann佯谬可能仅仅是基于外推的结果,但是构型熵在冷却过程中的降低是玻璃材料的一个普遍特征.正因为如此,学术界普遍认为构型熵是发展玻璃化理论的一个核心物理量.正如Berthier等23所指出,热力学理论必须解释构型熵的行为及其在玻璃化中的角色,而动力学理论也必须解释为什么构型熵是一个不相关因素.相应地,基于构型熵的模型对认识玻璃化转变机制起到了重要的促进作用,并且在高分子和其他体系的玻璃化研究中产生了一系列相关成果813.本文首先对玻璃化经典熵理论的发展进行简要回顾,包括Gibbs-DiMarzio理论24和Adam-Gibbs理论25,并介绍高分子玻璃化熵理论(generalized entropy theo-ry,GET)的基本框架26,27.之后,本文从分子细节影响高分子玻璃化的物理机制、热力学标度与活化体积的理论描述和高分子过冷液体的热力学-动力学关系三个逐步递进的方面阐述本课题组基于高分子玻璃化熵理论的研究进展,重点强调该理论在理解高分子玻璃化关键问题中的价值和优势.最后,本文探讨高分子玻璃化熵理论进一步发展面临的问题与挑战,并且对玻璃化理论研究的未来发展方向进行展望.2玻璃化熵理论2.1经典熵理论概述为了从构型熵角度揭示高分子玻璃化的物理机制,Gibbs和DiMarzio24在1958年基于Flory28的半柔性高分子格子模型发展了高分子玻璃化的统计热力学理论,即Gibbs-DiMarzio理论.该理论预测,Sc在降温过程中逐渐减小并且在某个温度T2处变为零.这一结果与Kauzmann设想的“理想玻璃化转变”相呼应.Gibbs和DiMarzio还证明在T2处的构型熵连续而恒压热熔不连续,从而玻璃化转变表现为一个典型的二级热力学相变,因此T2被称作“理想玻璃化转变温度”.但是,这一预测结果并未得到任何实验结果的证实,至今仍然存在争议.鉴于这一情形,DiMarzio等29在之后的一篇论文中推测,Sc在玻璃化转变温度处并非等于零,而是一个较小的正值.值得一提的是,Torquato等30发现硬球体系在随机密堆积(random close packing,RCP)处表现出超均匀(hyperuniform)性质.我们之前的模拟结中国科学:化学2023 年第 53 卷第 4 期617果表明,高分子过冷液体在接近玻璃化转变温度时逐渐趋近超均匀态31.因此,RCP有可能对应着“理想玻璃化转变”,进而与“Kauzmann佯谬”应该存在密切联系.阐明这一问题显然将会为很多玻璃化相关的问题提供重要启示.Gibbs-DiMarzio理论虽然在预测分子参数影响高分子Tg方面取得了一定成功,但该理论并不能直接计算动力学性质.1964年,Bestul和Chang32率先提出描述构型熵与松弛时间之间关系的经验表达式.之后不久,Adam和Gibbs25在1965年发展了描述玻璃化的经典熵理论.在Adam-Gibbs理论中,玻璃体系的结构松弛时间由构型熵Sc和高温活化自由能Go决定.通过提出协同重组区(cooperatively rearranging regions,CRR)的概念,并且假设CRR中的粒子数目与构型熵成反比关系,Adam和Gibbs基于过渡态理论获得了构型熵和松弛时间的定量关系式,即著名的Adam-Gibbs关系式:Gk TSS T=exp()(4)0oBc*c其中Sc*为构型熵的高温极限值.经过Freed33在2014年更为严格的推导,Adam-Gibbs关系式得到了更为普遍的认可,并且在解释实验和模拟结果方面发挥了重要作用.虽然Adam-Gibbs理论提出玻璃体系的动力学性质可以通过热力学量Sc获得,但是并没有建立起能够直接计算Sc的理论模型,使得Adam-Gibbs理论无法从分子尺度预测材料的玻璃化性质.另外,过渡态理论中的高温活化自由能包括焓Ho和熵So两部分贡献,而Adam-Gibbs理论出于简化的目的假设So=0,即忽略了高温活化自由能中的熵贡献.最近的研究结果表明,Adam-Gibbs理论的这个关键假设在高分子体系中并不成立31,34,35.需要说明的是,尽管在经典熵理论中存在着多个问题,但是这些模型对理解玻璃化本质具有深远影响.特别是,这些经典理论为进一步从分子层面发展玻璃化理论奠定了基础.下一节将讨论在经典熵理论基础上发展起来的高分子玻璃化熵理论.该理论将Adam-Gibbs关系式与一个强大的高分子统计热力学理论相结合,进而可以预测高分子玻璃化的热力学和动力学性质.需要强调的是,玻璃化研究已经开展多年,期间已经有多个有价值的理论模型被提出.熵理论目前来看是其中一类有前途的理论模型.毋庸置疑,针对玻璃化的其他热力学理论以及动力学理论也是凝聚态物理的重要研究方向,如自由体积理论36、非线性Lan-gevin方程理论37,38、模耦合理论39等.我们在之前的综述中已经讨论过了其中的一些理论27,40,因此本文不再重复讨论.2.2高分子玻璃化熵理论Freed等41自20世纪80年代建立了高分子格子模型,并采用类似统计力学中的Mayer集团展开方法来计算配分函数和自由能,因此该理论被称为格子集团理论(lattice cluster theory,LCT).LCT在Flory28和Gibbs-DiMarzio24格子模型的基础上包含了高分子的单体结构特征.除此之外,LCT能够在考虑排除体积相互作用、键连相互作用、内聚能、链刚性、单体结构等基本分子特征的情况下更严格地推导高分子体系的配分函数和自由能.图1列举了LCT可研究的多个高分子示意图.基于LCT的这些优势,将LCT与Adam-Gibbs关系式有效结合从而可以计算高分子玻璃化的动力学和热力学性质,进而建立起新的高分子玻璃化熵理论26,27,即GET.该理论突破了Gibbs-DiMarzio理论和Adam-Gibbs理论的多个限制,可以从分子层次预测高分子体系玻璃化的特征性质,而不再是仅仅局限于定性解释实验和模拟结果.在LCT框架下,每个单体由多个联合原子基团(united atom group)构成,且每个联合原子基团占据一个体积为Vcell的格点.格子中允许有空格点存在.对于一个可压缩高分子熔体,LCT能够得到每个格点的Helmholtz自由能f的解析表达式,具体形式如下42:ff=C(5)mfiii=16其中k T=()B1,为格点的填充分数,即总联合原子基团数与总格点数Nl的比例.上式中的fmf项为零阶平均场近似:fMz MMNMz=ln2+11+(1)ln(1)ln()(6)mfLi 2b其中M为每条链上的联合原子基团总数(即分子量),z袁琦璐等:高分子玻璃化熵理论研究进

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开