2023⁃03⁃10计算机应用,JournalofComputerApplications2023,43(3):700-705ISSN1001⁃9081CODENJYIIDUhttp://www.joca.cn基于图神经网络和注意力的双模态情感识别方法李路宝1,2*,陈田1,2,任福继3,罗蓓蓓1,2(1.合肥工业大学计算机与信息学院,合肥230601;2.情感计算与先进智能机器安徽省重点实验室(合肥工业大学),合肥230601;3.德岛大学理工学部,德岛770⁃8506,日本)(∗通信作者电子邮箱llb1008x@126.com)摘要:针对生理信号情感识别问题,提出一种基于图神经网络(GNN)和注意力的双模态情感识别方法。首先,使用GNN对脑电(EEG)信号进行分类;然后,使用基于注意力的双向长短期记忆(Bi-LSTM)网络对心电(ECG)信号进行分类;最后,通过Dempster-Shafer证据理论融合EGG和ECG分类结果,从而提高情感识别任务的综合性能。为验证所提方法的有效性,邀请20名受试者参与情感激发实验,并收集了受试者的EGG、ECG信号。实验结果表明,所提方法的二分类准确率在valence维度和arousal维度分别为91.82%和88.24%,相较于单模态EEG方法分别提高2.65%和0.40%,相较于单模态ECG方法分别提高19.79%和24.90%。可见,所提方法能够有效地提高情感识别的准确率,为医疗诊断等领域提供决策支持。关键词:情感识别;多模态;脑电;心电;图神经网络;注意力中图分类号:TP391文献标志码:ABimodalemotionrecognitionmethodbasedongraphneuralnetworkandattentionLILubao1,2*,CHENTian1,2,RENFuji3,LUOBeibei1,2(1.SchoolofComputerScienceandInformationEngineering,HefeiUniversityofTechnology,HefeiAnhui230601,China;2.AnhuiProvinceKeyLaboratoryofAffectiveComputingandAdvancedIntelligentMachine(HefeiUniversityofTechnology),HefeiAnhui230601,China;3.FacultyofEngineering,TokushimaUniversity,Tokushima770⁃8506,Japan)Abstract:Consideringtheissuesofphysiologicalsignalemotionrecognition,abimodalemotionrecognitionmethodbasedonGraphNeuralNetwork(GNN)andattentionwasproposed.Firstly,theGNNwasusedtoclassifyElectroEncephaloGram(EEG)signals.Secondly,anattention-basedBi-directionalLongShort-TermMemory(Bi-LSTM)networkwasusedtoclassifyElectroCardioGram(ECG)signals.Finally,theresultsofEEGandECGclassificationwerefusedbyDempster-Shaferevidencetheory,thusimprovingthecom...