温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
基于
熟悉
人机
混驾交
通流
车辆
模型
构建
李霞
文章编号:1673-0291(2023)01-0065-09DOI:10.11860/j.issn.1673-0291.20220106第 47 卷 第 1 期2023 年 2 月Vol.47 No.1Feb.2023北京交通大学学报JOURNAL OF BEIJING JIAOTONG UNIVERSITY基于熟悉度的人机混驾交通流车辆换道模型构建李霞 1a,赵晓东 2,张孝铭 3,朱敏清 1b,崔洪军 1a(1.河北工业大学 a.土木与交通学院,b.建筑与艺术设计学院,天津 300401;2.华杰工程咨询有限公司,北京 100020;3.帝国理工学院,伦敦 SW72AZ)摘要:网 联 自 动 驾 驶 车 辆(Connected and Autonomous Vehicles,CAV)与 普 通 车 辆(Human-driven Vehicles,HV)的车辆性能、驾驶行为均有较大差异,考虑 HV 驾驶员对 CAV 的熟悉度与CAV 驾驶协同行为,构建人机混驾交通流换道模型,可更准确地反映 CAV 混入对宏观交通流的影响,对人机混驾交通流管理意义重大.本文引入额外车间距离参数量化 HV 驾驶员对 CAV 的心理反应,改进 Gipps 安全距离模型,并计算不同目标车道车辆类型下车辆换道最小安全间隙;考虑CAV 协同驾驶行为将换道场景分为目标车道空间条件满足换道要求时的自由换道与空间条件不满足换道要求时的协同换道;应用元胞自动机(Cellular Automata,CA)理论构建人机混驾环境下基于 HV 驾驶员熟悉度与 CAV 驾驶协同行为的车辆换道行为模型;结合 Matlab进行换道场景仿真以验证所建模型有效性,并分析 CAV 混入对道路交通流速度波动的影响.研究结果表明:考虑驾驶员熟悉度情况下,道路最大流量较传统模型平均降低 1.32%,在 CAV 渗透率 P=0.6 时降低3.31%;同时 CAV 的协同驾驶行为可以显著提高道路最大流量,最大流量的提升比例随 CAV 渗透率的增大而不断增高,渗透率 P=1 时,纯 CAV 交通流环境下最大流量提升约 10.49%;CAV 的混入能够有效降低交通流速度波动,车辆密度 40 veh/(km ln)状态下,CAV 渗透率 P0.8时交通流速度波动平均值较纯 HV交通流降低 28%以上.关键词:智能交通;换道模型;元胞自动机;人机混驾;协同驾驶中图分类号:U491 文献标志码:ALane change model construction of human-machine shared driving based on driver s familiarityLI Xia1a,ZHAO Xiaodong2,ZHANG Xiaoming3,ZHU Minqing1b,CUI Hongjun1a(1a.School of Civil Engineering and Transportation,1b.School of Architecture and Art Design,Hebei University of Technology,Tianjin 300401,China;2.CHELBI Engineering Consultants,Inc.,Beijing 100020,China;3.Imperial College London,London SW72AZ,UK)Abstract:There are significant differences in vehicle performance and driving behaviors between Connected and Autonomous Vehicles(CAV)and Human-driven Vehicles(HV).According to HV drivers familiarity with CAV and CAV cooperative driving behavior,a lane change model is constructed for the human-machine mixed traffic flow.Constructing the model can accurately reflect the impact of 收稿日期:2022-08-18;修回日期:2022-11-01基金项目:国家自然科学基金(51908187,52172304)Foundation items:National Natural Science Foundation of China(51908187,52172304)第一作者:李霞(1981),女,河北新乐人,副教授,博士.研究方向为智能交通.email:.引用格式:李霞,赵晓东,张孝铭,等.基于熟悉度的人机混驾交通流车辆换道模型构建 J.北京交通大学学报,2023,47(1):65-73.LI Xia,ZHAO Xiaodong,ZHANG Xiaoming,et al.Lane change model construction of human-machine shared driving based on driver s familiarity J.Journal of Beijing Jiaotong University,2023,47(1):65-73.(in Chinese)北京交通大学学报第 47 卷CAV mixing on macroscopic traffic flow,which is significant to the management of human-machine mixed traffic flow.This paper introduces the additional distance to quantify the psychological response of HV drivers to CAV,thus improves the Gipps safety distance model,and calculates the minimum safety clearance of lane change under different vehicle types of target lane.Two scenarios are considered:free lane change when the spatial conditions of the target lane meet the lane-change requirements,and cooperative lane change when the spatial conditions cannot meet the lane-change requirements.Then,the Cellular-Automata theory is applied to build a lane change model based on HV drivers familiarity and CAV cooperative driving behavior in the human-machine mixed driving environment.Matlab is used to simulate the lane change scenarios,verify the proposed model,and analyze the effect of CAV mixing on speed fluctuation in road traffic flow.The results show that considering the driver s familiarity,the maximum road flow is 1.32%lower than the traditional model,and 3.31%lower when CAV permeability P=0.6.At the same time,the cooperative driving behavior of CAV can significantly improve the maximum road flow.The increasing percentage of the maximum flow increases with the increase of CAV permeability.When the permeability P=1,the maximum flow in the pure-CAV traffic flow environment increases by about 10.49%.The mixing of CAV can effectively reduce the speed fluctuation of traffic flow.Under the vehicle density of 40 veh/(km ln),the average velocity fluctuation in traffic flow is more than 28%lower than pure-HV traffic flow when CAV permeability P0.8.Keywords:intelligent transportation;lane change model;cellular automata;human-machine shared driving;cooperative driving网 联 自 动 驾 驶 车 辆(Connected and Autonomous Vehicles,CAV)与 普 通 车 辆(Human-driven Vehicles,HV)行驶状态差异较大,其组成的高速公路混合交通流运行特点也有所不同.研究不同类型车辆行驶与换道差异性,考虑不同车辆反应时间差异与 CAV 混入对 HV 驾驶员的影响,引入额外安全间距量化 HV 驾驶员对 CAV 熟悉程度构建换道模型,可更准确描述人机混驾交通流车辆换道特性与CAV 混入对宏观交通流的影响,有助于 CAV 混入下的交通流规划与管理.国内外关于人机混驾交通流换道模型构建,主要考虑 CAV 与 HV 驾驶行为差异性1-2对车辆换道规则进行划分,综合换道紧急度3、突发事故影响4与 CAV 队列5-6等多种影响因素,引入多项参数扩展换道模型以描述人机混驾交通流中的多种驾驶行为.但 CAV 混入高速公路交通流不是一蹴而就的,是一个循序渐进的过程,在这一过程中 HV 驾驶员对 CAV 的熟悉度一定程度上影响其在混合交通流中的驾驶行为,如魏宇浩7考虑不同信任程度驾驶员跟驰间距差异,但研究仅限于城市道路中低速行驶.侯培国等8考虑驾驶员跟驰 CAV 后方时出现增大安全间距的行为,但其考虑额外间距仅通过单车道跟驰模型,缺乏换道过程考虑,车辆间距的增大同时会对相邻车辆换道行为产生影响.Ma等9基于网络实验研究了不同类型驾驶员面对 CAV 时驾驶行为变化.Zhao 等10考虑驾驶员对 CAV 信任程度,将驾驶员分成三类并进行实车试验,分析了不同跟驰情况下车头时距.Razmi等11通过 51 名参与者进行驾驶模拟实验,分析了驾驶员面对不同 CAV场景时地跟驰和变道行为.Lee 等12同样选取驾驶模拟的方法邀请了 30位受试者进行实验,探究了目标车道不同长度的 CAV 队列对 HV 换道行为的影响.受限于现有技术条件,难以进行大范围人机混驾交通流开放道路测试,国内外已有小范围实验表明,CAV的混入将干扰 HV驾驶员的常规驾驶,HV的存在也将影响 CAV 既有驾驶行为.人机混驾交通流中,有必要考虑 HV 驾驶员对 CAV 熟悉程度,通过合理方式量化熟悉度对 HV