基于单向表示字典学习的电能质量扰动识别方法于华楠,于宏昊(东北电力大学电气工程学院,吉林吉林132012)摘要:电能质量扰动识别是电能质量数据分析问题中极其重要的一个部分。目前已经实现的电能质量扰动识别方法普遍存在识别速度较慢,识别准确率仍有较大提升空间等问题。文章提出一种计算简单但能有效识别分类的方法,即基于单向表示字典学习的电能质量扰动识别方法。对电能质量数据的训练样本进行训练得到与各个类别对应的子字典,提出单向约束以使样本在字典中的表示系数方向可以区分;通过计算测试样本的表示系数方向以及大小来区分所属类别。实验结果表明,所提方法不但识别准确度高于已有的识别方法,而且计算效率也有较大提升。关键词:电能质量;扰动识别;单向表示;字典学习DOI:10.19753/j.issn1001-1390.2023.04.019中图分类号:TM711文献标识码:B文章编号:1001-1390(2023)04-0133-06PowerqualitydisturbancerecognitionmethodbasedonunidirectionalrepresentationdictionarylearningYuHuanan,YuHonghao(SchoolofElectricalEngineering,NortheastElectricPowerUniversity,Jilin132012,Jilin,China)Abstract:Powerqualitydisturbancerecognitionisanessentialpartofpowerqualitydataanalysisproblems.Thecurrentlyimplementedpowerqualitydisturbancerecognitionmethodsgenerallysufferfromslowrecognitionspeedandlowrecognitionaccuracy,andthereisstillroomforimprovementintheaccuracyofidentification.Thispaperproposesamethodthatissim-pletocalculateandcaneffectivelyrecognizeclassification,thatis,apowerqualitydisturbancerecognitionmethodbasedonunidirectionalrepresentationdictionarylearning.Thetrainingsamplesofthepowerqualitydataistrainedtoobtainsub-dic-tionariescorrespondingtoeachtype,aunidirectionalconstraintisproposedsothatthedirectionofthecoefficientsofthesamplesinthedictionarycanbedistinguished.Thetypeisdistinguishedbycalculatingthedirectionandsizeoftherepre-sentationcoefficientofthetestsample.Theexperimentalresultsshowthatthemethodproposedinthispapernotonlyhashigherrecognitionaccuracythanexistingrecognitionmethods,butalsoimprovesthecalculationefficiency.Keywords:powerquality,disturbancerecognition,unidirectionalrepresentation,dictionary...